Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph ) |
umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph ) |
umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
umgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
umgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
umgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
umgrun | ⊢ (𝜑 → 𝑈 ∈ UMGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph ) | |
2 | umgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | umgrf 25764 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
6 | umgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UMGraph ) | |
7 | eqid 2610 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
8 | umgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | 7, 8 | umgrf 25764 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
11 | umgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
12 | 11 | eqcomd 2616 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
13 | 12 | pweqd 4113 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
14 | 13 | rabeqdv 3167 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
15 | 14 | feq3d 5945 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
16 | 10, 15 | mpbird 246 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
17 | umgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
18 | 5, 16, 17 | fun2d 5981 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
19 | umgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
20 | 19 | dmeqd 5248 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
21 | dmun 5253 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
22 | 20, 21 | syl6eq 2660 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
23 | umgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
24 | 23 | pweqd 4113 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
25 | 24 | rabeqdv 3167 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
26 | 19, 22, 25 | feq123d 5947 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (#‘𝑥) = 2} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})) |
27 | 18, 26 | mpbird 246 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (#‘𝑥) = 2}) |
28 | umgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
29 | eqid 2610 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
30 | eqid 2610 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
31 | 29, 30 | isumgrs 25762 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (#‘𝑥) = 2})) |
32 | 28, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (#‘𝑥) = 2})) |
33 | 27, 32 | mpbird 246 | 1 ⊢ (𝜑 → 𝑈 ∈ UMGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 {crab 2900 ∪ cun 3538 ∩ cin 3539 ∅c0 3874 𝒫 cpw 4108 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 2c2 10947 #chash 12979 Vtxcvtx 25673 iEdgciedg 25674 UMGraph cumgr 25748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-umgr 25750 |
This theorem is referenced by: umgrunop 25787 usgrun 40417 |
Copyright terms: Public domain | W3C validator |