Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > umgr3cyclex | Structured version Visualization version GIF version |
Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
Ref | Expression |
---|---|
uhgr3cyclex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgr3cyclex.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgr3cyclex | ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 25770 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
2 | 1 | 3ad2ant1 1075 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐺 ∈ UHGraph ) |
3 | simp2 1055 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | uhgr3cyclex.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 4 | umgredgne 25816 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ≠ 𝐵) |
6 | 5 | 3ad2antr1 1219 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐴 ≠ 𝐵) |
7 | prcom 4211 | . . . . . . . 8 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
8 | 7 | eleq1i 2679 | . . . . . . 7 ⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸) |
9 | 8 | biimpi 205 | . . . . . 6 ⊢ ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸) |
10 | 9 | 3ad2ant3 1077 | . . . . 5 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐶} ∈ 𝐸) |
11 | 4 | umgredgne 25816 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐶} ∈ 𝐸) → 𝐴 ≠ 𝐶) |
12 | 10, 11 | sylan2 490 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐴 ≠ 𝐶) |
13 | simp2 1055 | . . . . 5 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐵, 𝐶} ∈ 𝐸) | |
14 | 4 | umgredgne 25816 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐵 ≠ 𝐶) |
15 | 13, 14 | sylan2 490 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐵 ≠ 𝐶) |
16 | 6, 12, 15 | 3jca 1235 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
17 | 16 | 3adant2 1073 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
18 | simp3 1056 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) | |
19 | uhgr3cyclex.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
20 | 19, 4 | uhgr3cyclex 41349 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) |
21 | 2, 3, 17, 18, 20 | syl121anc 1323 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 {cpr 4127 class class class wbr 4583 ‘cfv 5804 0cc0 9815 3c3 10948 #chash 12979 Vtxcvtx 25673 UHGraph cuhgr 25722 UMGraph cumgr 25748 Edgcedga 25792 CycleSccycls 40991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-s2 13444 df-s3 13445 df-s4 13446 df-uhgr 25724 df-upgr 25749 df-umgr 25750 df-edga 25793 df-1wlks 40800 df-trls 40901 df-pths 40923 df-cycls 40993 |
This theorem is referenced by: umgr3v3e3cycl 41351 3cyclfrgr 41458 |
Copyright terms: Public domain | W3C validator |