Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

 Description: Alternate proof for umgr2adedgwlkon 41153, using umgr2adedgwlk 41152, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression

StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edg‘𝐺)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdg‘𝐺)
3 umgr2adedgwlk.f . . . 4 𝐹 = ⟨“𝐽𝐾”⟩
4 umgr2adedgwlk.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
5 umgr2adedgwlk.g . . . 4 (𝜑𝐺 ∈ UMGraph )
6 umgr2adedgwlk.a . . . 4 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
8 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 41152 . . 3 (𝜑 → (𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
10 simp1 1054 . . . 4 ((𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(1Walks‘𝐺)𝑃)
11 id 22 . . . . . . 7 ((𝑃‘0) = 𝐴 → (𝑃‘0) = 𝐴)
1211eqcoms 2618 . . . . . 6 (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴)
13123ad2ant1 1075 . . . . 5 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴)
14133ad2ant3 1077 . . . 4 ((𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴)
15 fveq2 6103 . . . . . . . . . . . 12 (2 = (#‘𝐹) → (𝑃‘2) = (𝑃‘(#‘𝐹)))
1615eqcoms 2618 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(#‘𝐹)))
1716eqeq1d 2612 . . . . . . . . . 10 ((#‘𝐹) = 2 → ((𝑃‘2) = 𝐶 ↔ (𝑃‘(#‘𝐹)) = 𝐶))
1817biimpcd 238 . . . . . . . . 9 ((𝑃‘2) = 𝐶 → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
1918eqcoms 2618 . . . . . . . 8 (𝐶 = (𝑃‘2) → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
20193ad2ant3 1077 . . . . . . 7 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
2120com12 32 . . . . . 6 ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(#‘𝐹)) = 𝐶))
2221a1i 11 . . . . 5 (𝐹(1Walks‘𝐺)𝑃 → ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(#‘𝐹)) = 𝐶)))
23223imp 1249 . . . 4 ((𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(#‘𝐹)) = 𝐶)
2410, 14, 233jca 1235 . . 3 ((𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))
259, 24syl 17 . 2 (𝜑 → (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))
26 3anass 1035 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
275, 6, 26sylanbrc 695 . . . . 5 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
281umgr2adedgwlklem 41151 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
29 3simpb 1052 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3029adantl 481 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3127, 28, 303syl 18 . . . 4 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
32 3anass 1035 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
335, 31, 32sylanbrc 695 . . 3 (𝜑 → (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
34 s2cli 13475 . . . . 5 ⟨“𝐽𝐾”⟩ ∈ Word V
353, 34eqeltri 2684 . . . 4 𝐹 ∈ Word V
36 s3cli 13476 . . . . 5 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
374, 36eqeltri 2684 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 470 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
40393adant1 1072 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
4140anim1i 590 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2610 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
4342iswlkOn 40865 . . . 4 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4533, 38, 44sylancl 693 . 2 (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4625, 45mpbird 246 1 (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173  {cpr 4127   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  #chash 12979  Word cword 13146  ⟨“cs2 13437  ⟨“cs3 13438  Vtxcvtx 25673  iEdgciedg 25674   UMGraph cumgr 25748  Edgcedga 25792  1Walksc1wlks 40796  WalksOncwlkson 40798 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-umgr 25750  df-edga 25793  df-1wlks 40800  df-wlkson 40802 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator