Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   GIF version

Theorem ulmss 23955
 Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z 𝑍 = (ℤ𝑀)
ulmss.t (𝜑𝑇𝑆)
ulmss.a ((𝜑𝑥𝑍) → 𝐴𝑊)
ulmss.u (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmss (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Distinct variable groups:   𝑥,𝑇   𝜑,𝑥   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem ulmss
Dummy variables 𝑗 𝑘 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2 (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
2 ulmss.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
32uztrn2 11581 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 ulmss.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑇𝑆)
6 ssralv 3629 . . . . . . . . . 10 (𝑇𝑆 → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8 fvres 6117 . . . . . . . . . . . . . . 15 (𝑧𝑇 → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
98ad2antll 761 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
10 simprl 790 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝑥𝑍)
11 ulmss.a . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑍) → 𝐴𝑊)
1211adantrr 749 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝐴𝑊)
13 resexg 5362 . . . . . . . . . . . . . . . . 17 (𝐴𝑊 → (𝐴𝑇) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (𝐴𝑇) ∈ V)
15 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑥𝑍 ↦ (𝐴𝑇)) = (𝑥𝑍 ↦ (𝐴𝑇))
1615fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑥𝑍 ∧ (𝐴𝑇) ∈ V) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1710, 14, 16syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1817fveq1d 6105 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = ((𝐴𝑇)‘𝑧))
19 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
2019fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑥𝑍𝐴𝑊) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2110, 12, 20syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2221fveq1d 6105 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (𝐴𝑧))
239, 18, 223eqtr4d 2654 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
2423ralrimivva 2954 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
25 nfv 1830 . . . . . . . . . . . . 13 𝑘𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧)
26 nfcv 2751 . . . . . . . . . . . . . 14 𝑥𝑇
27 nffvmpt1 6111 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)
28 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑥𝑧
2927, 28nffv 6110 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧)
30 nffvmpt1 6111 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍𝐴)‘𝑘)
3130, 28nffv 6110 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3229, 31nfeq 2762 . . . . . . . . . . . . . 14 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3326, 32nfral 2929 . . . . . . . . . . . . 13 𝑥𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
34 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘))
3534fveq1d 6105 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
36 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑘))
3736fveq1d 6105 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
3835, 37eqeq12d 2625 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3938ralbidv 2969 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
4025, 33, 39cbvral 3143 . . . . . . . . . . . 12 (∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4124, 40sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4241r19.21bi 2916 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
43 oveq1 6556 . . . . . . . . . . . . 13 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧)) = ((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧)))
4443fveq2d 6107 . . . . . . . . . . . 12 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))))
4544breq1d 4593 . . . . . . . . . . 11 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4645ralimi 2936 . . . . . . . . . 10 (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
47 ralbi 3050 . . . . . . . . . 10 (∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4842, 46, 473syl 18 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
497, 48sylibrd 248 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
503, 49sylan2 490 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5150anassrs 678 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5251ralimdva 2945 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5352reximdva 3000 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5453ralimdv 2946 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
55 ulmf 23940 . . . . . 6 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆))
561, 55syl 17 . . . . 5 (𝜑 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆))
57 fdm 5964 . . . . . . . 8 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → dom (𝑥𝑍𝐴) = (ℤ𝑚))
5819dmmptss 5548 . . . . . . . 8 dom (𝑥𝑍𝐴) ⊆ 𝑍
5957, 58syl6eqssr 3619 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → (ℤ𝑚) ⊆ 𝑍)
60 uzid 11578 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
6160adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ𝑚))
62 ssel 3562 . . . . . . . . 9 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑚𝑍))
63 eluzel2 11568 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
6463, 2eleq2s 2706 . . . . . . . . 9 (𝑚𝑍𝑀 ∈ ℤ)
6562, 64syl6 34 . . . . . . . 8 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑀 ∈ ℤ))
6661, 65syl5com 31 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((ℤ𝑚) ⊆ 𝑍𝑀 ∈ ℤ))
6759, 66syl5 33 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → 𝑀 ∈ ℤ))
6867rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → 𝑀 ∈ ℤ))
6956, 68mpd 15 . . . 4 (𝜑𝑀 ∈ ℤ)
7011ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐴𝑊)
7119fnmpt 5933 . . . . . 6 (∀𝑥𝑍 𝐴𝑊 → (𝑥𝑍𝐴) Fn 𝑍)
7270, 71syl 17 . . . . 5 (𝜑 → (𝑥𝑍𝐴) Fn 𝑍)
73 frn 5966 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑𝑚 𝑆))
7473rexlimivw 3011 . . . . . 6 (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑𝑚 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑𝑚 𝑆))
7556, 74syl 17 . . . . 5 (𝜑 → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑𝑚 𝑆))
76 df-f 5808 . . . . 5 ((𝑥𝑍𝐴):𝑍⟶(ℂ ↑𝑚 𝑆) ↔ ((𝑥𝑍𝐴) Fn 𝑍 ∧ ran (𝑥𝑍𝐴) ⊆ (ℂ ↑𝑚 𝑆)))
7772, 75, 76sylanbrc 695 . . . 4 (𝜑 → (𝑥𝑍𝐴):𝑍⟶(ℂ ↑𝑚 𝑆))
78 eqidd 2611 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (((𝑥𝑍𝐴)‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
79 eqidd 2611 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
80 ulmcl 23939 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
811, 80syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
82 ulmscl 23937 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
831, 82syl 17 . . . 4 (𝜑𝑆 ∈ V)
842, 69, 77, 78, 79, 81, 83ulm2 23943 . . 3 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8519fmpt 6289 . . . . . . . . . 10 (∀𝑥𝑍 𝐴 ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑥𝑍𝐴):𝑍⟶(ℂ ↑𝑚 𝑆))
8677, 85sylibr 223 . . . . . . . . 9 (𝜑 → ∀𝑥𝑍 𝐴 ∈ (ℂ ↑𝑚 𝑆))
8786r19.21bi 2916 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐴 ∈ (ℂ ↑𝑚 𝑆))
88 elmapi 7765 . . . . . . . 8 (𝐴 ∈ (ℂ ↑𝑚 𝑆) → 𝐴:𝑆⟶ℂ)
8987, 88syl 17 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐴:𝑆⟶ℂ)
904adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇𝑆)
9189, 90fssresd 5984 . . . . . 6 ((𝜑𝑥𝑍) → (𝐴𝑇):𝑇⟶ℂ)
92 cnex 9896 . . . . . . 7 ℂ ∈ V
9383, 4ssexd 4733 . . . . . . . 8 (𝜑𝑇 ∈ V)
9493adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇 ∈ V)
95 elmapg 7757 . . . . . . 7 ((ℂ ∈ V ∧ 𝑇 ∈ V) → ((𝐴𝑇) ∈ (ℂ ↑𝑚 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9692, 94, 95sylancr 694 . . . . . 6 ((𝜑𝑥𝑍) → ((𝐴𝑇) ∈ (ℂ ↑𝑚 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9791, 96mpbird 246 . . . . 5 ((𝜑𝑥𝑍) → (𝐴𝑇) ∈ (ℂ ↑𝑚 𝑇))
9897, 15fmptd 6292 . . . 4 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇)):𝑍⟶(ℂ ↑𝑚 𝑇))
99 eqidd 2611 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
100 fvres 6117 . . . . 5 (𝑧𝑇 → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
101100adantl 481 . . . 4 ((𝜑𝑧𝑇) → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
10281, 4fssresd 5984 . . . 4 (𝜑 → (𝐺𝑇):𝑇⟶ℂ)
1032, 69, 98, 99, 101, 102, 93ulm2 23943 . . 3 (𝜑 → ((𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
10454, 84, 1033imtr4d 282 . 2 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇)))
1051, 104mpd 15 1 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813   < clt 9953   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  abscabs 13822  ⇝𝑢culm 23934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-ulm 23935 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator