MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Visualization version   GIF version

Theorem ulm0 23949
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z 𝑍 = (ℤ𝑀)
ulm0.m (𝜑𝑀 ∈ ℤ)
ulm0.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulm0.g (𝜑𝐺:𝑆⟶ℂ)
Assertion
Ref Expression
ulm0 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)

Proof of Theorem ulm0
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2 uzid 11578 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
4 ulm0.z . . . . . . 7 𝑍 = (ℤ𝑀)
53, 4syl6eleqr 2699 . . . . . 6 (𝜑𝑀𝑍)
6 ne0i 3880 . . . . . 6 (𝑀𝑍𝑍 ≠ ∅)
75, 6syl 17 . . . . 5 (𝜑𝑍 ≠ ∅)
87adantr 480 . . . 4 ((𝜑𝑆 = ∅) → 𝑍 ≠ ∅)
9 ral0 4028 . . . . . . 7 𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥
10 simpr 476 . . . . . . . 8 ((𝜑𝑆 = ∅) → 𝑆 = ∅)
1110raleqdv 3121 . . . . . . 7 ((𝜑𝑆 = ∅) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
129, 11mpbiri 247 . . . . . 6 ((𝜑𝑆 = ∅) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1312ralrimivw 2950 . . . . 5 ((𝜑𝑆 = ∅) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1413ralrimivw 2950 . . . 4 ((𝜑𝑆 = ∅) → ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
15 r19.2z 4012 . . . 4 ((𝑍 ≠ ∅ ∧ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
168, 14, 15syl2anc 691 . . 3 ((𝜑𝑆 = ∅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1716ralrimivw 2950 . 2 ((𝜑𝑆 = ∅) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
181adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝑀 ∈ ℤ)
19 ulm0.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
2019adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
21 eqidd 2611 . . 3 (((𝜑𝑆 = ∅) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
22 eqidd 2611 . . 3 (((𝜑𝑆 = ∅) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
23 ulm0.g . . . 4 (𝜑𝐺:𝑆⟶ℂ)
2423adantr 480 . . 3 ((𝜑𝑆 = ∅) → 𝐺:𝑆⟶ℂ)
25 0ex 4718 . . . 4 ∅ ∈ V
2610, 25syl6eqel 2696 . . 3 ((𝜑𝑆 = ∅) → 𝑆 ∈ V)
274, 18, 20, 21, 22, 24, 26ulm2 23943 . 2 ((𝜑𝑆 = ∅) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
2817, 27mpbird 246 1 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  c0 3874   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813   < clt 9953  cmin 10145  cz 11254  cuz 11563  +crp 11708  abscabs 13822  𝑢culm 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-ulm 23935
This theorem is referenced by:  pserulm  23980
  Copyright terms: Public domain W3C validator