Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrunop | Structured version Visualization version GIF version |
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph ) |
uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph ) | |
2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph ) | |
3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 4859 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | fvex 6113 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
11 | 5, 10 | eqeltri 2684 | . . . 4 ⊢ 𝑉 ∈ V |
12 | fvex 6113 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
13 | 3, 12 | eqeltri 2684 | . . . . 5 ⊢ 𝐸 ∈ V |
14 | fvex 6113 | . . . . . 6 ⊢ (iEdg‘𝐻) ∈ V | |
15 | 4, 14 | eqeltri 2684 | . . . . 5 ⊢ 𝐹 ∈ V |
16 | 13, 15 | unex 6854 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
17 | 11, 16 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
18 | opvtxfv 25681 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
19 | 17, 18 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
20 | opiedgfv 25684 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
21 | 17, 20 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
22 | 1, 2, 3, 4, 5, 6, 7, 9, 19, 21 | uhgrun 25740 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∪ cun 3538 ∩ cin 3539 ∅c0 3874 〈cop 4131 dom cdm 5038 ‘cfv 5804 Vtxcvtx 25673 iEdgciedg 25674 UHGraph cuhgr 25722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-1st 7059 df-2nd 7060 df-vtx 25675 df-iedg 25676 df-uhgr 25724 |
This theorem is referenced by: ushgrunop 25743 |
Copyright terms: Public domain | W3C validator |