Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrsubgrself Structured version   Visualization version   GIF version

Theorem uhgrsubgrself 40504
 Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
uhgrsubgrself (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)

Proof of Theorem uhgrsubgrself
StepHypRef Expression
1 ssid 3587 . . 3 (Vtx‘𝐺) ⊆ (Vtx‘𝐺)
2 ssid 3587 . . 3 (iEdg‘𝐺) ⊆ (iEdg‘𝐺)
31, 2pm3.2i 470 . 2 ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))
4 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgrfun 25732 . . 3 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
6 id 22 . . 3 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph )
7 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
87, 7, 4, 4uhgrissubgr 40499 . . 3 ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph ) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
95, 6, 8mpd3an23 1418 . 2 (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
103, 9mpbiri 247 1 (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977   ⊆ wss 3540   class class class wbr 4583  Fun wfun 5798  ‘cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722   SubGraph csubgr 40491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-uhgr 25724  df-edga 25793  df-subgr 40492 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator