MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrstrrepe Structured version   Visualization version   GIF version

Theorem uhgrstrrepe 25745
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑𝐺 Struct ⟨(Base‘ndx), 𝐼⟩), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) or only (𝜑 → Fun 𝐺). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
uhgrstrrepe.v 𝑉 = (Base‘𝐺)
uhgrstrrepe.i 𝐼 = (.ef‘ndx)
uhgrstrrepe.s (𝜑𝐺 Struct ⟨(Base‘ndx), 𝐼⟩)
uhgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
uhgrstrrepe.g (𝜑𝐺𝑈)
uhgrstrrepe.e (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
uhgrstrrepe.w (𝜑𝐸𝑊)
Assertion
Ref Expression
uhgrstrrepe (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph )

Proof of Theorem uhgrstrrepe
StepHypRef Expression
1 uhgrstrrepe.e . . . 4 (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
2 uhgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
3 baseid 15747 . . . . . . . . . 10 Base = Slot (Base‘ndx)
4 slotsbaseefdif 25672 . . . . . . . . . . 11 (Base‘ndx) ≠ (.ef‘ndx)
5 uhgrstrrepe.i . . . . . . . . . . 11 𝐼 = (.ef‘ndx)
64, 5neeqtrri 2855 . . . . . . . . . 10 (Base‘ndx) ≠ 𝐼
73, 6setsnid 15743 . . . . . . . . 9 (Base‘𝐺) = (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
8 uhgrstrrepe.s . . . . . . . . . . 11 (𝜑𝐺 Struct ⟨(Base‘ndx), 𝐼⟩)
9 uhgrstrrepe.b . . . . . . . . . . 11 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
10 uhgrstrrepe.g . . . . . . . . . . 11 (𝜑𝐺𝑈)
11 uhgrstrrepe.w . . . . . . . . . . 11 (𝜑𝐸𝑊)
122, 5, 8, 9, 10, 1, 11uhgrstrrepelem 25744 . . . . . . . . . 10 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)))
13 funvtxval 25695 . . . . . . . . . . 11 (((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
1413eqcomd 2616 . . . . . . . . . 10 (((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) → (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
1512, 14syl 17 . . . . . . . . 9 (𝜑 → (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
167, 15syl5eq 2656 . . . . . . . 8 (𝜑 → (Base‘𝐺) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
172, 16syl5req 2657 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
1817pweqd 4113 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
1918difeq1d 3689 . . . . 5 (𝜑 → (𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2019feq3d 5945 . . . 4 (𝜑 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
211, 20mpbird 246 . . 3 (𝜑𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}))
225opeq1i 4343 . . . . . . 7 𝐼, 𝐸⟩ = ⟨(.ef‘ndx), 𝐸
2322oveq2i 6560 . . . . . 6 (𝐺 sSet ⟨𝐼, 𝐸⟩) = (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)
2423fveq2i 6106 . . . . 5 (.ef‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩))
25 funiedgval 25696 . . . . . 6 (((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
2612, 25syl 17 . . . . 5 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨𝐼, 𝐸⟩)))
27 df-edgf 25668 . . . . . . . 8 .ef = Slot 18
28 1nn0 11185 . . . . . . . . 9 1 ∈ ℕ0
29 8nn 11068 . . . . . . . . 9 8 ∈ ℕ
3028, 29decnncl 11394 . . . . . . . 8 18 ∈ ℕ
3127, 30ndxid 15716 . . . . . . 7 .ef = Slot (.ef‘ndx)
3231setsid 15742 . . . . . 6 ((𝐺𝑈𝐸𝑊) → 𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
3310, 11, 32syl2anc 691 . . . . 5 (𝜑𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
3424, 26, 333eqtr4a 2670 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
3534dmeqd 5248 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
3634, 35feq12d 5946 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
3721, 36mpbird 246 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}))
38 ovex 6577 . . 3 (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V
39 eqid 2610 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
40 eqid 2610 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
4139, 40isuhgr 25726 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
4238, 41mp1i 13 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
4337, 42mpbird 246 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  {cpr 4127  cop 4131   class class class wbr 4583  dom cdm 5038  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  1c1 9816  8c8 10953  cdc 11369   Struct cstr 15691  ndxcnx 15692   sSet csts 15693  Basecbs 15695  .efcedgf 25667  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-edgf 25668  df-vtx 25675  df-iedg 25676  df-uhgr 25724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator