Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgr3cyclex Structured version   Visualization version   GIF version

Theorem uhgr3cyclex 41349
Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr3cyclex ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem uhgr3cyclex
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
21eleq2i 2680 . . . . . 6 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
3 eqid 2610 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
43uhgredgiedgb 25799 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
52, 4syl5bb 271 . . . . 5 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
61eleq2i 2680 . . . . . 6 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
73uhgredgiedgb 25799 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
86, 7syl5bb 271 . . . . 5 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
91eleq2i 2680 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
103uhgredgiedgb 25799 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
119, 10syl5bb 271 . . . . 5 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
125, 8, 113anbi123d 1391 . . . 4 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
1312adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
14 eqid 2610 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ = ⟨“𝐴𝐵𝐶𝐴”⟩
15 eqid 2610 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ = ⟨“𝑖𝑗𝑘”⟩
16 3simpa 1051 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
17 pm3.22 464 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
18173adant2 1073 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
1916, 18jca 553 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2019adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2120ad2antlr 759 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
22 3simpa 1051 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐴𝐶))
23 necom 2835 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵𝐵𝐴)
2423biimpi 205 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
2524anim1i 590 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐵𝐶) → (𝐵𝐴𝐵𝐶))
2625ancomd 466 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐵𝐶) → (𝐵𝐶𝐵𝐴))
27263adant2 1073 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐵𝐶𝐵𝐴))
28 necom 2835 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶𝐶𝐴)
2928biimpi 205 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶𝐶𝐴)
30293ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
3122, 27, 303jca 1235 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3231adantl 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3332ad2antlr 759 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
34 eqimss 3620 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3534adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
36353ad2ant3 1077 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
37 eqimss 3620 . . . . . . . . . . . . . . . . . 18 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3837adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
39383ad2ant1 1075 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
40 eqimss 3620 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4140adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
42413ad2ant2 1076 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4336, 39, 423jca 1235 . . . . . . . . . . . . . . 15 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
4443adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
45 uhgr3cyclex.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
46 simp3 1056 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
47 simp1 1054 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
4846, 47jca 553 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
4948, 30anim12i 588 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
5049adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
51 pm3.22 464 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
52513adant2 1073 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
5345, 1, 3uhgr3cyclexlem 41348 . . . . . . . . . . . . . . . 16 ((((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))) → 𝑖𝑗)
5450, 52, 53syl2an 493 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑗)
55 3simpc 1053 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
56 simp3 1056 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
5755, 56anim12i 588 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
5857adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
59 3simpc 1053 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))))
6045, 1, 3uhgr3cyclexlem 41348 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑘𝑖)
6160necomd 2837 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6258, 59, 61syl2an 493 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6345, 1, 3uhgr3cyclexlem 41348 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))) → 𝑗𝑘)
6463exp31 628 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
65643adant3 1074 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6665com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
67663ad2ant1 1075 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6867impcom 445 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6968adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
7069com12 32 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
71703adant3 1074 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
7271impcom 445 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑗𝑘)
7354, 62, 723jca 1235 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (𝑖𝑗𝑖𝑘𝑗𝑘))
74 eqidd 2611 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝐴 = 𝐴)
7514, 15, 21, 33, 44, 45, 3, 73, 743cyclpd 41346 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (⟨“𝑖𝑗𝑘”⟩(CycleS‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
76 s3cli 13476 . . . . . . . . . . . . . . 15 ⟨“𝑖𝑗𝑘”⟩ ∈ Word V
7776elexi 3186 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ ∈ V
78 s4cli 13477 . . . . . . . . . . . . . . 15 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ Word V
7978elexi 3186 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ V
80 breq12 4588 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → (𝑓(CycleS‘𝐺)𝑝 ↔ ⟨“𝑖𝑗𝑘”⟩(CycleS‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩))
81 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → (#‘𝑓) = (#‘⟨“𝑖𝑗𝑘”⟩))
8281eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → ((#‘𝑓) = 3 ↔ (#‘⟨“𝑖𝑗𝑘”⟩) = 3))
8382adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((#‘𝑓) = 3 ↔ (#‘⟨“𝑖𝑗𝑘”⟩) = 3))
84 fveq1 6102 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶𝐴”⟩‘0))
8584eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8685adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8780, 83, 863anbi123d 1391 . . . . . . . . . . . . . 14 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴) ↔ (⟨“𝑖𝑗𝑘”⟩(CycleS‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴)))
8877, 79, 87spc2ev 3274 . . . . . . . . . . . . 13 ((⟨“𝑖𝑗𝑘”⟩(CycleS‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8975, 88syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
9089expcom 450 . . . . . . . . . . 11 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
91903exp 1256 . . . . . . . . . 10 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9291rexlimiva 3010 . . . . . . . . 9 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9392com12 32 . . . . . . . 8 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9493rexlimiva 3010 . . . . . . 7 (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9594com13 86 . . . . . 6 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9695rexlimiva 3010 . . . . 5 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
97963imp 1249 . . . 4 ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9897com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9913, 98sylbid 229 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
100993impia 1253 1 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540  {cpr 4127   class class class wbr 4583  dom cdm 5038  cfv 5804  0cc0 9815  3c3 10948  #chash 12979  Word cword 13146  ⟨“cs3 13438  ⟨“cs4 13439  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722  Edgcedga 25792  CycleSccycls 40991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446  df-uhgr 25724  df-edga 25793  df-1wlks 40800  df-trls 40901  df-pths 40923  df-cycls 40993
This theorem is referenced by:  umgr3cyclex  41350
  Copyright terms: Public domain W3C validator