Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix Structured version   Visualization version   GIF version

Theorem uffix 21535
 Description: Lemma for fixufil 21536 and uffixfr 21537. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem uffix
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssi 4280 . . . 4 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
21adantl 481 . . 3 ((𝑋𝑉𝐴𝑋) → {𝐴} ⊆ 𝑋)
3 snnzg 4251 . . . 4 (𝐴𝑋 → {𝐴} ≠ ∅)
43adantl 481 . . 3 ((𝑋𝑉𝐴𝑋) → {𝐴} ≠ ∅)
5 simpl 472 . . 3 ((𝑋𝑉𝐴𝑋) → 𝑋𝑉)
6 snfbas 21480 . . 3 (({𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅ ∧ 𝑋𝑉) → {{𝐴}} ∈ (fBas‘𝑋))
72, 4, 5, 6syl3anc 1318 . 2 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
8 selpw 4115 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
98a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ 𝒫 𝑋𝑦𝑋))
10 snex 4835 . . . . . . . 8 {𝐴} ∈ V
1110snid 4155 . . . . . . 7 {𝐴} ∈ {{𝐴}}
12 snssi 4280 . . . . . . 7 (𝐴𝑦 → {𝐴} ⊆ 𝑦)
13 sseq1 3589 . . . . . . . 8 (𝑥 = {𝐴} → (𝑥𝑦 ↔ {𝐴} ⊆ 𝑦))
1413rspcev 3282 . . . . . . 7 (({𝐴} ∈ {{𝐴}} ∧ {𝐴} ⊆ 𝑦) → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
1511, 12, 14sylancr 694 . . . . . 6 (𝐴𝑦 → ∃𝑥 ∈ {{𝐴}}𝑥𝑦)
16 intss1 4427 . . . . . . . . 9 (𝑥 ∈ {{𝐴}} → {{𝐴}} ⊆ 𝑥)
17 sstr2 3575 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑥 → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
1816, 17syl 17 . . . . . . . 8 (𝑥 ∈ {{𝐴}} → (𝑥𝑦 {{𝐴}} ⊆ 𝑦))
19 snidg 4153 . . . . . . . . . . 11 (𝐴𝑋𝐴 ∈ {𝐴})
2019adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝐴𝑋) → 𝐴 ∈ {𝐴})
2110intsn 4448 . . . . . . . . . 10 {{𝐴}} = {𝐴}
2220, 21syl6eleqr 2699 . . . . . . . . 9 ((𝑋𝑉𝐴𝑋) → 𝐴 {{𝐴}})
23 ssel 3562 . . . . . . . . 9 ( {{𝐴}} ⊆ 𝑦 → (𝐴 {{𝐴}} → 𝐴𝑦))
2422, 23syl5com 31 . . . . . . . 8 ((𝑋𝑉𝐴𝑋) → ( {{𝐴}} ⊆ 𝑦𝐴𝑦))
2518, 24sylan9r 688 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑥 ∈ {{𝐴}}) → (𝑥𝑦𝐴𝑦))
2625rexlimdva 3013 . . . . . 6 ((𝑋𝑉𝐴𝑋) → (∃𝑥 ∈ {{𝐴}}𝑥𝑦𝐴𝑦))
2715, 26impbid2 215 . . . . 5 ((𝑋𝑉𝐴𝑋) → (𝐴𝑦 ↔ ∃𝑥 ∈ {{𝐴}}𝑥𝑦))
289, 27anbi12d 743 . . . 4 ((𝑋𝑉𝐴𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
29 eleq2 2677 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
3029elrab 3331 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
3130a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
32 elfg 21485 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
337, 32syl 17 . . . 4 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ (𝑋filGen{{𝐴}}) ↔ (𝑦𝑋 ∧ ∃𝑥 ∈ {{𝐴}}𝑥𝑦)))
3428, 31, 333bitr4d 299 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ 𝑦 ∈ (𝑋filGen{{𝐴}})))
3534eqrdv 2608 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
367, 35jca 553 1 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∩ cint 4410  ‘cfv 5804  (class class class)co 6549  fBascfbas 19555  filGencfg 19556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-fg 19565  df-fil 21460 This theorem is referenced by:  fixufil  21536  uffixfr  21537
 Copyright terms: Public domain W3C validator