Proof of Theorem txcmpb
Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) |
2 | | simplrr 797 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅) |
3 | | fo1stres 7083 |
. . . . . . 7
⊢ (𝑌 ≠ ∅ →
(1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋) |
5 | | txcmpb.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝑅 |
6 | | txcmpb.2 |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝑆 |
7 | 5, 6 | txuni 21205 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
8 | 7 | ad2antrr 758 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
9 | | foeq2 6025 |
. . . . . . 7
⊢ ((𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) → ((1st
↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑋 ↔ (1st ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑋)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
((1st ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑋 ↔ (1st ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑋)) |
11 | 4, 10 | mpbid 221 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑋) |
12 | 5 | toptopon 20548 |
. . . . . . 7
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
13 | 6 | toptopon 20548 |
. . . . . . 7
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
14 | | tx1cn 21222 |
. . . . . . 7
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
15 | 12, 13, 14 | syl2anb 495 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(1st ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
16 | 15 | ad2antrr 758 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(1st ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
17 | 5 | cncmp 21005 |
. . . . 5
⊢ (((𝑅 ×t 𝑆) ∈ Comp ∧
(1st ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp) |
18 | 1, 11, 16, 17 | syl3anc 1318 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp) |
19 | | simplrl 796 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅) |
20 | | fo2ndres 7084 |
. . . . . . 7
⊢ (𝑋 ≠ ∅ →
(2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌) |
22 | | foeq2 6025 |
. . . . . . 7
⊢ ((𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) → ((2nd
↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑌)) |
23 | 8, 22 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
((2nd ↾ (𝑋
× 𝑌)):(𝑋 × 𝑌)–onto→𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)):∪ (𝑅 ×t 𝑆)–onto→𝑌)) |
24 | 21, 23 | mpbid 221 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑌) |
25 | | tx2cn 21223 |
. . . . . . 7
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
26 | 12, 13, 25 | syl2anb 495 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(2nd ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
27 | 26 | ad2antrr 758 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) →
(2nd ↾ (𝑋
× 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
28 | 6 | cncmp 21005 |
. . . . 5
⊢ (((𝑅 ×t 𝑆) ∈ Comp ∧
(2nd ↾ (𝑋
× 𝑌)):∪ (𝑅
×t 𝑆)–onto→𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp) |
29 | 1, 24, 27, 28 | syl3anc 1318 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp) |
30 | 18, 29 | jca 553 |
. . 3
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)) |
31 | 30 | ex 449 |
. 2
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) |
32 | | txcmp 21256 |
. 2
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) |
33 | 31, 32 | impbid1 214 |
1
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) |