MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Structured version   Visualization version   GIF version

Theorem txcmpb 21257
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1 𝑋 = 𝑅
txcmpb.2 𝑌 = 𝑆
Assertion
Ref Expression
txcmpb (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 476 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
2 simplrr 797 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑌 ≠ ∅)
3 fo1stres 7083 . . . . . . 7 (𝑌 ≠ ∅ → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
42, 3syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋)
5 txcmpb.1 . . . . . . . . 9 𝑋 = 𝑅
6 txcmpb.2 . . . . . . . . 9 𝑌 = 𝑆
75, 6txuni 21205 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
87ad2antrr 758 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9 foeq2 6025 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
108, 9syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑋 ↔ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋))
114, 10mpbid 221 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋)
125toptopon 20548 . . . . . . 7 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
136toptopon 20548 . . . . . . 7 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
14 tx1cn 21222 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1512, 13, 14syl2anb 495 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
1615ad2antrr 758 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
175cncmp 21005 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (1st ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑋 ∧ (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → 𝑅 ∈ Comp)
181, 11, 16, 17syl3anc 1318 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑅 ∈ Comp)
19 simplrl 796 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑋 ≠ ∅)
20 fo2ndres 7084 . . . . . . 7 (𝑋 ≠ ∅ → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
2119, 20syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌)
22 foeq2 6025 . . . . . . 7 ((𝑋 × 𝑌) = (𝑅 ×t 𝑆) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
238, 22syl 17 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑌 ↔ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌))
2421, 23mpbid 221 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌)
25 tx2cn 21223 . . . . . . 7 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2612, 13, 25syl2anb 495 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
2726ad2antrr 758 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
286cncmp 21005 . . . . 5 (((𝑅 ×t 𝑆) ∈ Comp ∧ (2nd ↾ (𝑋 × 𝑌)): (𝑅 ×t 𝑆)–onto𝑌 ∧ (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → 𝑆 ∈ Comp)
291, 24, 27, 28syl3anc 1318 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → 𝑆 ∈ Comp)
3018, 29jca 553 . . 3 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) ∧ (𝑅 ×t 𝑆) ∈ Comp) → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))
3130ex 449 . 2 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp → (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
32 txcmp 21256 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
3331, 32impbid1 214 1 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874   cuni 4372   × cxp 5036  cres 5040  ontowfo 5802  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  Compccmp 20999   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cmp 21000  df-tx 21175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator