MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgbtwnid Structured version   Visualization version   GIF version

Theorem ttgbtwnid 25564
Description: Any complex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgbtwnid.1 (𝜑𝐻 ∈ ℂMod)
ttgbtwnid.y (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
ttgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem ttgbtwnid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝜑)
2 simpr 476 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3 ttgbtwnid.1 . . . . . . . . 9 (𝜑𝐻 ∈ ℂMod)
4 clmlmod 22675 . . . . . . . . 9 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
53, 4syl 17 . . . . . . . 8 (𝜑𝐻 ∈ LMod)
6 ttgelitv.x . . . . . . . 8 (𝜑𝑋𝑃)
7 ttgitvval.b . . . . . . . . 9 𝑃 = (Base‘𝐻)
8 eqid 2610 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
9 ttgitvval.m . . . . . . . . 9 = (-g𝐻)
107, 8, 9lmodsubid 18746 . . . . . . . 8 ((𝐻 ∈ LMod ∧ 𝑋𝑃) → (𝑋 𝑋) = (0g𝐻))
115, 6, 10syl2anc 691 . . . . . . 7 (𝜑 → (𝑋 𝑋) = (0g𝐻))
1211ad2antrr 758 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑋 𝑋) = (0g𝐻))
1312oveq2d 6565 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (𝑋 𝑋)) = (𝑘 · (0g𝐻)))
145ad2antrr 758 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝐻 ∈ LMod)
15 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
1615ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (0[,]1) ⊆ 𝑅)
17 simplr 788 . . . . . . 7 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘 ∈ (0[,]1))
1816, 17sseldd 3569 . . . . . 6 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑘𝑅)
19 eqid 2610 . . . . . . 7 (Scalar‘𝐻) = (Scalar‘𝐻)
20 ttgitvval.s . . . . . . 7 · = ( ·𝑠𝐻)
21 ttgbtwnid.r . . . . . . 7 𝑅 = (Base‘(Scalar‘𝐻))
2219, 20, 21, 8lmodvs0 18720 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑘𝑅) → (𝑘 · (0g𝐻)) = (0g𝐻))
2314, 18, 22syl2anc 691 . . . . 5 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑘 · (0g𝐻)) = (0g𝐻))
242, 13, 233eqtrd 2648 . . . 4 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → (𝑌 𝑋) = (0g𝐻))
25 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
267, 8, 9lmodsubeq0 18745 . . . . . 6 ((𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃) → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
275, 25, 6, 26syl3anc 1318 . . . . 5 (𝜑 → ((𝑌 𝑋) = (0g𝐻) ↔ 𝑌 = 𝑋))
2827biimpa 500 . . . 4 ((𝜑 ∧ (𝑌 𝑋) = (0g𝐻)) → 𝑌 = 𝑋)
291, 24, 28syl2anc 691 . . 3 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑌 = 𝑋)
3029eqcomd 2616 . 2 (((𝜑𝑘 ∈ (0[,]1)) ∧ (𝑌 𝑋) = (𝑘 · (𝑋 𝑋))) → 𝑋 = 𝑌)
31 ttgbtwnid.y . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
32 ttgval.n . . . 4 𝐺 = (toTG‘𝐻)
33 ttgitvval.i . . . 4 𝐼 = (Itv‘𝐺)
3432, 33, 7, 9, 20, 6, 6, 3, 25ttgelitv 25563 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑋) ↔ ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋))))
3531, 34mpbid 221 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝑌 𝑋) = (𝑘 · (𝑋 𝑋)))
3630, 35r19.29a 3060 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  -gcsg 17247  LModclmod 18686  ℂModcclm 22670  Itvcitv 25135  toTGcttg 25553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ring 18372  df-lmod 18688  df-clm 22671  df-itv 25137  df-lng 25138  df-ttg 25554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator