Step | Hyp | Ref
| Expression |
1 | | tsmsxp.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ TopGrp) |
2 | | tgptmd 21693 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
4 | 3 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝐺 ∈ TopMnd) |
5 | | simp2 1055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑢 ∈ (TopOpen‘𝐺)) |
6 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
7 | | tsmsxp.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
8 | 6, 7 | tmdtopon 21695 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ TopMnd →
(TopOpen‘𝐺) ∈
(TopOn‘𝐵)) |
9 | 4, 8 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
10 | | toponss 20544 |
. . . . . . . . . . 11
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘𝐵)
∧ 𝑢 ∈
(TopOpen‘𝐺)) →
𝑢 ⊆ 𝐵) |
11 | 9, 5, 10 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑢 ⊆ 𝐵) |
12 | | simp3 1056 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝑢) |
13 | 11, 12 | sseldd 3569 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝐵) |
14 | | tmdmnd 21689 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
15 | 4, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝐺 ∈ Mnd) |
16 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) |
17 | 7, 16 | mndidcl 17131 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
18 | 15, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (0g‘𝐺) ∈ 𝐵) |
19 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
20 | 7, 19, 16 | mndrid 17135 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
21 | 15, 13, 20 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
22 | 21, 12 | eqeltrd 2688 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ 𝑢) |
23 | 7, 6, 19 | tmdcn2 21703 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) |
24 | 4, 5, 13, 18, 22, 23 | syl23anc 1325 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) |
25 | | r19.29 3054 |
. . . . . . . . 9
⊢
((∀𝑣 ∈
(TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢))) |
26 | | simp31 1090 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → 𝑥 ∈ 𝑣) |
27 | | elfpw 8151 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin)) |
28 | 27 | simplbi 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶)) |
29 | 28 | ad2antrl 760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶)) |
30 | | dmss 5245 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶)) |
32 | | dmxpss 5484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
(𝐴 × 𝐶) ⊆ 𝐴 |
33 | 31, 32 | syl6ss 3580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ 𝐴) |
34 | 27 | simprbi 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin) |
35 | 34 | ad2antrl 760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin) |
36 | | dmfi 8129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Fin → dom 𝑦 ∈ Fin) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin) |
38 | | elfpw 8151 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦 ⊆ 𝐴 ∧ dom 𝑦 ∈ Fin)) |
39 | 33, 37, 38 | sylanbrc 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
40 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(.g‘𝐺) = (.g‘𝐺) |
41 | | simpl11 1129 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝜑) |
42 | | tsmsxp.g |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐺 ∈ CMnd) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ CMnd) |
44 | 41, 3 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ TopMnd) |
45 | | simprrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
46 | | elfpw 8151 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑏 ∈ Fin)) |
47 | 46 | simprbi 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏 ∈ Fin) |
48 | 45, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑏 ∈ Fin) |
49 | | simpl2r 1108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑡 ∈ (TopOpen‘𝐺)) |
50 | 44, 14 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ Mnd) |
51 | 50, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (0g‘𝐺) ∈ 𝐵) |
52 | | hashcl 13009 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 ∈ Fin →
(#‘𝑏) ∈
ℕ0) |
53 | 48, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (#‘𝑏) ∈
ℕ0) |
54 | 7, 40, 16 | mulgnn0z 17390 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺 ∈ Mnd ∧ (#‘𝑏) ∈ ℕ0)
→ ((#‘𝑏)(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
55 | 50, 53, 54 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ((#‘𝑏)(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
56 | | simpl32 1136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (0g‘𝐺) ∈ 𝑡) |
57 | 55, 56 | eqeltrd 2688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ((#‘𝑏)(.g‘𝐺)(0g‘𝐺)) ∈ 𝑡) |
58 | 6, 7, 40, 43, 44, 48, 49, 51, 57 | tmdgsum2 21710 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) |
59 | | simp111 1183 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑) |
60 | 59, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd) |
61 | 59, 1 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp) |
62 | | tsmsxp.a |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
63 | 59, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴 ∈ 𝑉) |
64 | | tsmsxp.c |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
65 | 59, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶 ∈ 𝑊) |
66 | | tsmsxp.f |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
67 | 59, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
68 | | tsmsxp.h |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
69 | 59, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴⟶𝐵) |
70 | | tsmsxp.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
71 | 59, 70 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
72 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(-g‘𝐺) = (-g‘𝐺) |
73 | | simp3l 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺)) |
74 | | simp3rl 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g‘𝐺) ∈ 𝑠) |
75 | | simp2rl 1123 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
76 | | simp2rr 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦 ⊆ 𝑏) |
77 | | simp2ll 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
78 | 7, 60, 61, 63, 65, 67, 69, 71, 6, 16, 19, 72, 73, 74, 75, 76, 77 | tsmsxplem1 21766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) |
79 | 43 | 3adant3 1074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd) |
80 | 61 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp) |
81 | 63 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴 ∈ 𝑉) |
82 | 65 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶 ∈ 𝑊) |
83 | 67 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
84 | 69 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴⟶𝐵) |
85 | 41 | 3adant3 1074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑) |
86 | 85, 70 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
87 | | simp3ll 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺)) |
88 | 74 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g‘𝐺) ∈ 𝑠) |
89 | | simp2rl 1123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
90 | | simp133 1191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) |
91 | | simp3rl 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) |
92 | | simp2ll 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
93 | | simp2rr 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦 ⊆ 𝑏) |
94 | | simp3rr 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) |
95 | 94 | simpld 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦 ⊆ 𝑛) |
96 | | relxp 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ Rel
(𝐴 × 𝐶) |
97 | | relss 5129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦)) |
98 | 28, 96, 97 | mpisyl 21 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦) |
99 | | relssdmrn 5573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (Rel
𝑦 → 𝑦 ⊆ (dom 𝑦 × ran 𝑦)) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦)) |
101 | | xpss12 5148 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((dom
𝑦 ⊆ 𝑏 ∧ ran 𝑦 ⊆ 𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛)) |
102 | 100, 101 | sylan9ss 3581 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦 ⊆ 𝑏 ∧ ran 𝑦 ⊆ 𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛)) |
103 | 92, 93, 95, 102 | syl12anc 1316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛)) |
104 | 94 | simprd 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠) |
105 | | elfpw 8151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛 ⊆ 𝐶 ∧ 𝑛 ∈ Fin)) |
106 | | xpss12 5148 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝑛 ⊆ 𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶)) |
107 | | xpfi 8116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin) |
108 | 106, 107 | anim12i 588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ 𝐴 ∧ 𝑛 ⊆ 𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
109 | 108 | an4s 865 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ 𝐴 ∧ 𝑏 ∈ Fin) ∧ (𝑛 ⊆ 𝐶 ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
110 | 46, 105, 109 | syl2anb 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
111 | | elfpw 8151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
112 | 110, 111 | sylibr 223 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
113 | 89, 91, 112 | syl2anc 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
114 | | simp2lr 1122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) |
115 | | sseq2 3590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑏 × 𝑛) → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ (𝑏 × 𝑛))) |
116 | | reseq2 5312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = (𝑏 × 𝑛) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (𝑏 × 𝑛))) |
117 | 116 | oveq2d 6565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ 𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛)))) |
118 | 117 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)) |
119 | 115, 118 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑏 × 𝑛) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))) |
120 | 119 | rspcv 3278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → (∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))) |
121 | 113, 114,
103, 120 | syl3c 64 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣) |
122 | | simp3lr 1126 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) |
123 | 122 | simprd 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡) |
124 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑔 = ℎ → (𝐺 Σg 𝑔) = (𝐺 Σg ℎ)) |
125 | 124 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑔 = ℎ → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ℎ) ∈ 𝑡)) |
126 | 125 | cbvralv 3147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(∀𝑔 ∈
(𝑠
↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ℎ ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg ℎ) ∈ 𝑡) |
127 | 123, 126 | sylib 207 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ℎ ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg ℎ) ∈ 𝑡) |
128 | 7, 79, 80, 81, 82, 83, 84, 86, 6, 16, 19, 72, 87, 88, 89, 90, 91, 103, 104, 121, 127 | tsmsxplem2 21767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
129 | 128 | 3exp 1256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
130 | 129 | exp4a 631 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
131 | 130 | 3imp1 1272 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
132 | 78, 131 | rexlimddv 3017 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
133 | 132 | 3expa 1257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
134 | 58, 133 | rexlimddv 3017 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
135 | 134 | anassrs 678 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
136 | 135 | expr 641 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
137 | 136 | ralrimiva 2949 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
138 | | sseq1 3589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = dom 𝑦 → (𝑎 ⊆ 𝑏 ↔ dom 𝑦 ⊆ 𝑏)) |
139 | 138 | imbi1d 330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = dom 𝑦 → ((𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) ↔ (dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
140 | 139 | ralbidv 2969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = dom 𝑦 → (∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
141 | 140 | rspcev 3282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
142 | 39, 137, 141 | syl2anc 691 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
143 | 142 | rexlimdvaa 3014 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
144 | 26, 143 | embantd 57 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
145 | 144 | 3expia 1259 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
146 | 145 | anassrs 678 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
147 | 146 | rexlimdva 3013 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
148 | 147 | com23 84 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
149 | 148 | impd 446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
150 | 149 | rexlimdva 3013 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
151 | 25, 150 | syl5 33 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
152 | 24, 151 | mpan2d 706 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
153 | 152 | 3expia 1259 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑥 ∈ 𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
154 | 153 | com23 84 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → (𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
155 | 154 | ralrimdva 2952 |
. . . 4
⊢ (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
156 | 155 | anim2d 587 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))))) |
157 | | eqid 2610 |
. . . 4
⊢
(𝒫 (𝐴
× 𝐶) ∩ Fin) =
(𝒫 (𝐴 × 𝐶) ∩ Fin) |
158 | | tgptps 21694 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
159 | 1, 158 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
160 | | xpexg 6858 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 × 𝐶) ∈ V) |
161 | 62, 64, 160 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
162 | 7, 6, 157, 42, 159, 161, 66 | eltsms 21746 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))))) |
163 | | eqid 2610 |
. . . 4
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
164 | 7, 6, 163, 42, 159, 62, 68 | eltsms 21746 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))))) |
165 | 156, 162,
164 | 3imtr4d 282 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻))) |
166 | 165 | ssrdv 3574 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) |