Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsktrss | Structured version Visualization version GIF version |
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsktrss | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1055 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → Tr 𝐴) | |
2 | dftr4 4685 | . . 3 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
3 | 1, 2 | sylib 207 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝒫 𝐴) |
4 | tskpwss 9453 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
5 | 4 | 3adant2 1073 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
6 | 3, 5 | sstrd 3578 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 ∈ wcel 1977 ⊆ wss 3540 𝒫 cpw 4108 Tr wtr 4680 Tarskictsk 9449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-tr 4681 df-tsk 9450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |