Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskmap | Structured version Visualization version GIF version |
Description: Set exponentiation is an element of a transitive Tarski class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskmap | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 ↑𝑚 𝐵) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3880 | . . . 4 ⊢ (𝐴 ∈ 𝑇 → 𝑇 ≠ ∅) | |
2 | tskwun 9485 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) | |
3 | 2 | 3expa 1257 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑇 ≠ ∅) → 𝑇 ∈ WUni) |
4 | 1, 3 | sylan2 490 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ WUni) |
5 | 4 | 3adant3 1074 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝑇 ∈ WUni) |
6 | simp2 1055 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝐴 ∈ 𝑇) | |
7 | simp3 1056 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝐵 ∈ 𝑇) | |
8 | 5, 6, 7 | wunmap 9427 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 ↑𝑚 𝐵) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 Tr wtr 4680 (class class class)co 6549 ↑𝑚 cmap 7744 WUnicwun 9401 Tarskictsk 9449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-ac2 9168 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-smo 7330 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-oi 8298 df-har 8346 df-r1 8510 df-card 8648 df-aleph 8649 df-cf 8650 df-acn 8651 df-ac 8822 df-wina 9385 df-ina 9386 df-wun 9403 df-tsk 9450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |