MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssOLD Structured version   Visualization version   GIF version

Theorem trssOLD 4690
Description: Obsolete proof of trss 4689 as of 26-Jul-2021. (Contributed by NM, 7-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
trssOLD (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trssOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2 sseq1 3589 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
31, 2imbi12d 333 . . . 4 (𝑥 = 𝐵 → ((𝑥𝐴𝑥𝐴) ↔ (𝐵𝐴𝐵𝐴)))
43imbi2d 329 . . 3 (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥𝐴𝑥𝐴)) ↔ (Tr 𝐴 → (𝐵𝐴𝐵𝐴))))
5 dftr3 4684 . . . 4 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
6 rsp 2913 . . . 4 (∀𝑥𝐴 𝑥𝐴 → (𝑥𝐴𝑥𝐴))
75, 6sylbi 206 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
84, 7vtoclg 3239 . 2 (𝐵𝐴 → (Tr 𝐴 → (𝐵𝐴𝐵𝐴)))
98pm2.43b 53 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  wss 3540  Tr wtr 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator