Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trssOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of trss 4689 as of 26-Jul-2021. (Contributed by NM, 7-Aug-1994.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
trssOLD | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2676 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | sseq1 3589 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴) ↔ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
4 | 3 | imbi2d 329 | . . 3 ⊢ (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) ↔ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)))) |
5 | dftr3 4684 | . . . 4 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
6 | rsp 2913 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
7 | 5, 6 | sylbi 206 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
8 | 4, 7 | vtoclg 3239 | . 2 ⊢ (𝐵 ∈ 𝐴 → (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
9 | 8 | pm2.43b 53 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ⊆ wss 3540 Tr wtr 4680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-v 3175 df-in 3547 df-ss 3554 df-uni 4373 df-tr 4681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |