Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpred0 Structured version   Visualization version   GIF version

Theorem trpred0 30980
Description: The class of transitive predecessors is empty when 𝐴 is empty. (Contributed by Scott Fenton, 30-Apr-2012.)
Assertion
Ref Expression
trpred0 TrPred(𝑅, ∅, 𝑋) = ∅

Proof of Theorem trpred0
Dummy variables 𝑎 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 30963 . 2 TrPred(𝑅, ∅, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖)
2 pred0 5627 . . . . . . . . . . 11 Pred(𝑅, ∅, 𝑦) = ∅
32a1i 11 . . . . . . . . . 10 (𝑦𝑎 → Pred(𝑅, ∅, 𝑦) = ∅)
43iuneq2i 4475 . . . . . . . . 9 𝑦𝑎 Pred(𝑅, ∅, 𝑦) = 𝑦𝑎
5 iun0 4512 . . . . . . . . 9 𝑦𝑎 ∅ = ∅
64, 5eqtri 2632 . . . . . . . 8 𝑦𝑎 Pred(𝑅, ∅, 𝑦) = ∅
76mpteq2i 4669 . . . . . . 7 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅)
8 pred0 5627 . . . . . . 7 Pred(𝑅, ∅, 𝑋) = ∅
9 rdgeq12 7396 . . . . . . 7 (((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅) ∧ Pred(𝑅, ∅, 𝑋) = ∅) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅), ∅))
107, 8, 9mp2an 704 . . . . . 6 rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅), ∅)
1110reseq1i 5313 . . . . 5 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)
1211fveq1i 6104 . . . 4 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖)
13 nn0suc 6982 . . . . 5 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
14 fveq2 6103 . . . . . . 7 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅))
15 0ex 4718 . . . . . . . 8 ∅ ∈ V
16 fr0g 7418 . . . . . . . 8 (∅ ∈ V → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅) = ∅)
1715, 16ax-mp 5 . . . . . . 7 ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅) = ∅
1814, 17syl6eq 2660 . . . . . 6 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
19 nfcv 2751 . . . . . . . . . 10 𝑎
20 nfcv 2751 . . . . . . . . . 10 𝑎𝑗
21 eqid 2610 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)
22 eqidd 2611 . . . . . . . . . 10 (𝑎 = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑗) → ∅ = ∅)
2319, 20, 19, 21, 22frsucmpt 7420 . . . . . . . . 9 ((𝑗 ∈ ω ∧ ∅ ∈ V) → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅)
2415, 23mpan2 703 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅)
25 fveq2 6103 . . . . . . . . 9 (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗))
2625eqeq1d 2612 . . . . . . . 8 (𝑖 = suc 𝑗 → (((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅ ↔ ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅))
2724, 26syl5ibrcom 236 . . . . . . 7 (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅))
2827rexlimiv 3009 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
2918, 28jaoi 393 . . . . 5 ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
3013, 29syl 17 . . . 4 (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
3112, 30syl5eq 2656 . . 3 (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ∅)
3231iuneq2i 4475 . 2 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = 𝑖 ∈ ω ∅
33 iun0 4512 . 2 𝑖 ∈ ω ∅ = ∅
341, 32, 333eqtri 2636 1 TrPred(𝑅, ∅, 𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 382   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  c0 3874   ciun 4455  cmpt 4643  cres 5040  Predcpred 5596  suc csuc 5642  cfv 5804  ωcom 6957  reccrdg 7392  TrPredctrpred 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator