Step | Hyp | Ref
| Expression |
1 | | dftrpred2 30963 |
. 2
⊢
TrPred(𝑅, ∅,
𝑋) = ∪ 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) |
2 | | pred0 5627 |
. . . . . . . . . . 11
⊢
Pred(𝑅, ∅,
𝑦) =
∅ |
3 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑎 → Pred(𝑅, ∅, 𝑦) = ∅) |
4 | 3 | iuneq2i 4475 |
. . . . . . . . 9
⊢ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦) = ∪ 𝑦 ∈ 𝑎 ∅ |
5 | | iun0 4512 |
. . . . . . . . 9
⊢ ∪ 𝑦 ∈ 𝑎 ∅ = ∅ |
6 | 4, 5 | eqtri 2632 |
. . . . . . . 8
⊢ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦) = ∅ |
7 | 6 | mpteq2i 4669 |
. . . . . . 7
⊢ (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅) |
8 | | pred0 5627 |
. . . . . . 7
⊢
Pred(𝑅, ∅,
𝑋) =
∅ |
9 | | rdgeq12 7396 |
. . . . . . 7
⊢ (((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅) ∧ Pred(𝑅, ∅, 𝑋) = ∅) → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅),
∅)) |
10 | 7, 8, 9 | mp2an 704 |
. . . . . 6
⊢
rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅),
∅) |
11 | 10 | reseq1i 5313 |
. . . . 5
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅),
∅) ↾ ω) |
12 | 11 | fveq1i 6104 |
. . . 4
⊢
((rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑖) |
13 | | nn0suc 6982 |
. . . . 5
⊢ (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗)) |
14 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅),
∅) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘∅)) |
15 | | 0ex 4718 |
. . . . . . . 8
⊢ ∅
∈ V |
16 | | fr0g 7418 |
. . . . . . . 8
⊢ (∅
∈ V → ((rec((𝑎
∈ V ↦ ∅), ∅) ↾ ω)‘∅) =
∅) |
17 | 15, 16 | ax-mp 5 |
. . . . . . 7
⊢
((rec((𝑎 ∈ V
↦ ∅), ∅) ↾ ω)‘∅) =
∅ |
18 | 14, 17 | syl6eq 2660 |
. . . . . 6
⊢ (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅),
∅) ↾ ω)‘𝑖) = ∅) |
19 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑎∅ |
20 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑎𝑗 |
21 | | eqid 2610 |
. . . . . . . . . 10
⊢
(rec((𝑎 ∈ V
↦ ∅), ∅) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω) |
22 | | eqidd 2611 |
. . . . . . . . . 10
⊢ (𝑎 = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑗) →
∅ = ∅) |
23 | 19, 20, 19, 21, 22 | frsucmpt 7420 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ ∅
∈ V) → ((rec((𝑎
∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅) |
24 | 15, 23 | mpan2 703 |
. . . . . . . 8
⊢ (𝑗 ∈ ω →
((rec((𝑎 ∈ V ↦
∅), ∅) ↾ ω)‘suc 𝑗) = ∅) |
25 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑖) =
((rec((𝑎 ∈ V ↦
∅), ∅) ↾ ω)‘suc 𝑗)) |
26 | 25 | eqeq1d 2612 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → (((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑖) = ∅
↔ ((rec((𝑎 ∈ V
↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅)) |
27 | 24, 26 | syl5ibrcom 236 |
. . . . . . 7
⊢ (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑖) =
∅)) |
28 | 27 | rexlimiv 3009 |
. . . . . 6
⊢
(∃𝑗 ∈
ω 𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅),
∅) ↾ ω)‘𝑖) = ∅) |
29 | 18, 28 | jaoi 393 |
. . . . 5
⊢ ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾
ω)‘𝑖) =
∅) |
30 | 13, 29 | syl 17 |
. . . 4
⊢ (𝑖 ∈ ω →
((rec((𝑎 ∈ V ↦
∅), ∅) ↾ ω)‘𝑖) = ∅) |
31 | 12, 30 | syl5eq 2656 |
. . 3
⊢ (𝑖 ∈ ω →
((rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ∅) |
32 | 31 | iuneq2i 4475 |
. 2
⊢ ∪ 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ∪ 𝑖 ∈ ω
∅ |
33 | | iun0 4512 |
. 2
⊢ ∪ 𝑖 ∈ ω ∅ =
∅ |
34 | 1, 32, 33 | 3eqtri 2636 |
1
⊢
TrPred(𝑅, ∅,
𝑋) =
∅ |