Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlsegvdeglem7 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem7 41394
Description: Lemma for trlsegvdeg 41395. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(TrailS‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem7 (𝜑 → dom (iEdg‘𝑌) ∈ Fin)

Proof of Theorem trlsegvdeglem7
StepHypRef Expression
1 trlsegvdeg.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlsegvdeg.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlsegvdeg.f . . 3 (𝜑 → Fun 𝐼)
4 trlsegvdeg.n . . 3 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
5 trlsegvdeg.u . . 3 (𝜑𝑈𝑉)
6 trlsegvdeg.w . . 3 (𝜑𝐹(TrailS‘𝐺)𝑃)
7 trlsegvdeg.vx . . 3 (𝜑 → (Vtx‘𝑋) = 𝑉)
8 trlsegvdeg.vy . . 3 (𝜑 → (Vtx‘𝑌) = 𝑉)
9 trlsegvdeg.vz . . 3 (𝜑 → (Vtx‘𝑍) = 𝑉)
10 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
12 trlsegvdeg.iz . . 3 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeglem5 41392 . 2 (𝜑 → dom (iEdg‘𝑌) = {(𝐹𝑁)})
14 snfi 7923 . 2 {(𝐹𝑁)} ∈ Fin
1513, 14syl6eqel 2696 1 (𝜑 → dom (iEdg‘𝑌) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125  cop 4131   class class class wbr 4583  dom cdm 5038  cres 5040  cima 5041  Fun wfun 5798  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  ...cfz 12197  ..^cfzo 12334  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  TrailSctrls 40899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-en 7842  df-fin 7845
This theorem is referenced by:  trlsegvdeg  41395  eupth2lem3lem2  41397
  Copyright terms: Public domain W3C validator