Step | Hyp | Ref
| Expression |
1 | | elex 3185 |
. 2
⊢ (𝑉 ∈ 𝑋 → 𝑉 ∈ V) |
2 | | elex 3185 |
. 2
⊢ (𝐸 ∈ 𝑌 → 𝐸 ∈ V) |
3 | | df-trail 26037 |
. . . 4
⊢ Trails =
(𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓)}) |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Trails =
(𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓)})) |
5 | | oveq12 6558 |
. . . . . . . 8
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣 Walks 𝑒) = (𝑉 Walks 𝐸)) |
6 | 5 | breqd 4594 |
. . . . . . 7
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑓(𝑣 Walks 𝑒)𝑝 ↔ 𝑓(𝑉 Walks 𝐸)𝑝)) |
7 | 6 | anbi1d 737 |
. . . . . 6
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ Fun ◡𝑓))) |
8 | 7 | adantl 481 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓) ↔ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ Fun ◡𝑓))) |
9 | | iswlkg 26052 |
. . . . . . . 8
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉 Walks 𝐸)𝑝 ↔ (𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
10 | 9 | adantr 480 |
. . . . . . 7
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑓(𝑉 Walks 𝐸)𝑝 ↔ (𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
11 | 10 | anbi1d 737 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ Fun ◡𝑓) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ∧ Fun ◡𝑓))) |
12 | | 3anass 1035 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
13 | | ancom 465 |
. . . . . . . 8
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ↔ (Fun ◡𝑓 ∧ 𝑓 ∈ Word dom 𝐸)) |
14 | 13 | anbi1i 727 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ↔ ((Fun ◡𝑓 ∧ 𝑓 ∈ Word dom 𝐸) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
15 | | anass 679 |
. . . . . . . 8
⊢ (((Fun
◡𝑓 ∧ 𝑓 ∈ Word dom 𝐸) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ↔ (Fun ◡𝑓 ∧ (𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})))) |
16 | | ancom 465 |
. . . . . . . 8
⊢ ((Fun
◡𝑓 ∧ (𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ∧ Fun ◡𝑓)) |
17 | | 3anass 1035 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
18 | 17 | bicomi 213 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ↔ (𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) |
19 | 18 | anbi1i 727 |
. . . . . . . 8
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ∧ Fun ◡𝑓) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ∧ Fun ◡𝑓)) |
20 | 15, 16, 19 | 3bitri 285 |
. . . . . . 7
⊢ (((Fun
◡𝑓 ∧ 𝑓 ∈ Word dom 𝐸) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ∧ Fun ◡𝑓)) |
21 | 12, 14, 20 | 3bitri 285 |
. . . . . 6
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ∧ Fun ◡𝑓)) |
22 | 11, 21 | syl6bbr 277 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ Fun ◡𝑓) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
23 | 8, 22 | bitrd 267 |
. . . 4
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))) |
24 | 23 | opabbidv 4648 |
. . 3
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ Fun ◡𝑓)} = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
25 | | simpl 472 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V) |
26 | | simpr 476 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝐸 ∈ V) |
27 | | anass 679 |
. . . . . 6
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) ↔ (𝑓 ∈ Word dom 𝐸 ∧ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})))) |
28 | 12, 27 | bitri 263 |
. . . . 5
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐸 ∧ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})))) |
29 | 28 | opabbii 4649 |
. . . 4
⊢
{〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐸 ∧ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})))} |
30 | | dmexg 6989 |
. . . . . . 7
⊢ (𝐸 ∈ V → dom 𝐸 ∈ V) |
31 | 30 | adantl 481 |
. . . . . 6
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → dom 𝐸 ∈ V) |
32 | | wrdexg 13170 |
. . . . . 6
⊢ (dom
𝐸 ∈ V → Word dom
𝐸 ∈
V) |
33 | 31, 32 | syl 17 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Word dom 𝐸 ∈ V) |
34 | | fzfi 12633 |
. . . . . . 7
⊢
(0...(#‘𝑓))
∈ Fin |
35 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → 𝑉 ∈ V) |
36 | | mapex 7750 |
. . . . . . 7
⊢
(((0...(#‘𝑓))
∈ Fin ∧ 𝑉 ∈
V) → {𝑝 ∣ 𝑝:(0...(#‘𝑓))⟶𝑉} ∈ V) |
37 | 34, 35, 36 | sylancr 694 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → {𝑝 ∣ 𝑝:(0...(#‘𝑓))⟶𝑉} ∈ V) |
38 | | simpl 472 |
. . . . . . . . 9
⊢ ((𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) → 𝑝:(0...(#‘𝑓))⟶𝑉) |
39 | 38 | adantl 481 |
. . . . . . . 8
⊢ ((Fun
◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})) → 𝑝:(0...(#‘𝑓))⟶𝑉) |
40 | 39 | ss2abi 3637 |
. . . . . . 7
⊢ {𝑝 ∣ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))} ⊆ {𝑝 ∣ 𝑝:(0...(#‘𝑓))⟶𝑉} |
41 | 40 | a1i 11 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → {𝑝 ∣ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))} ⊆ {𝑝 ∣ 𝑝:(0...(#‘𝑓))⟶𝑉}) |
42 | 37, 41 | ssexd 4733 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑓 ∈ Word dom 𝐸) → {𝑝 ∣ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}))} ∈ V) |
43 | 33, 42 | opabex3d 7037 |
. . . 4
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐸 ∧ (Fun ◡𝑓 ∧ (𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})))} ∈ V) |
44 | 29, 43 | syl5eqel 2692 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} ∈ V) |
45 | 4, 24, 25, 26, 44 | ovmpt2d 6686 |
. 2
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 Trails 𝐸) = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
46 | 1, 2, 45 | syl2an 493 |
1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉 Trails 𝐸) = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐸 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐸‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |