Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcone Structured version   Visualization version   GIF version

Theorem trlcone 35034
Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlcone.b 𝐵 = (Base‘𝐾)
trlcone.h 𝐻 = (LHyp‘𝐾)
trlcone.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcone.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcone (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))

Proof of Theorem trlcone
StepHypRef Expression
1 simpl3l 1109 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simp11 1084 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1167 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
4 trlcone.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
5 trlcone.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 34450 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
72, 3, 6syl2anc 691 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹𝑇)
8 simp12r 1168 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺𝑇)
94, 5ltrnco 35025 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
102, 3, 8, 9syl3anc 1318 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐺) ∈ 𝑇)
11 eqid 2610 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
12 eqid 2610 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
13 trlcone.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1411, 12, 4, 5, 13trlco 35033 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
152, 7, 10, 14syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅‘(𝐹 ∘ (𝐹𝐺)))(le‘𝐾)((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
16 coass 5571 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
17 trlcone.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
1817, 4, 5ltrn1o 34428 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
192, 3, 18syl2anc 691 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐹:𝐵1-1-onto𝐵)
20 f1ococnv1 6078 . . . . . . . . . . . . 13 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2119, 20syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝐹𝐹) = ( I ↾ 𝐵))
2221coeq1d 5205 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
2317, 4, 5ltrn1o 34428 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
242, 8, 23syl2anc 691 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺:𝐵1-1-onto𝐵)
25 f1of 6050 . . . . . . . . . . . 12 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
26 fcoi2 5992 . . . . . . . . . . . 12 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2724, 25, 263syl 18 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2822, 27eqtrd 2644 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
2916, 28syl5reqr 2659 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 = (𝐹 ∘ (𝐹𝐺)))
3029fveq2d 6107 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅‘(𝐹 ∘ (𝐹𝐺))))
31 simp11l 1165 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ HL)
32 simp2 1055 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
33 eqid 2610 . . . . . . . . . . 11 (Atoms‘𝐾) = (Atoms‘𝐾)
3412, 33hlatjidm 33673 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
3531, 32, 34syl2anc 691 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = (𝑅𝐹))
364, 5, 13trlcnv 34470 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
372, 3, 36syl2anc 691 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3837eqcomd 2616 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐹))
39 simp3 1056 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅‘(𝐹𝐺)))
4038, 39oveq12d 6567 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐹)(join‘𝐾)(𝑅𝐹)) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4135, 40eqtr3d 2646 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = ((𝑅𝐹)(join‘𝐾)(𝑅‘(𝐹𝐺))))
4215, 30, 413brtr4d 4615 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺)(le‘𝐾)(𝑅𝐹))
43 hlatl 33665 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4431, 43syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐾 ∈ AtLat)
45 simp13r 1170 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
4617, 33, 4, 5, 13trlnidat 34478 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ (Atoms‘𝐾))
472, 8, 45, 46syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) ∈ (Atoms‘𝐾))
4811, 33atcmp 33616 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
4944, 47, 32, 48syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → ((𝑅𝐺)(le‘𝐾)(𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5042, 49mpbid 221 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐺) = (𝑅𝐹))
5150eqcomd 2616 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) = (𝑅‘(𝐹𝐺))) → (𝑅𝐹) = (𝑅𝐺))
52513expia 1259 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) = (𝑅‘(𝐹𝐺)) → (𝑅𝐹) = (𝑅𝐺)))
5352necon3d 2803 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺))))
541, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
55 simpl3r 1110 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 ≠ ( I ↾ 𝐵))
56 simpl1 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl2r 1108 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
58 eqid 2610 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
5917, 58, 4, 5, 13trlid0b 34483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6056, 57, 59syl2anc 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
6160necon3bid 2826 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
6255, 61mpbid 221 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) ≠ (0.‘𝐾))
6362necomd 2837 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (0.‘𝐾) ≠ (𝑅𝐺))
64 simpr 476 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) = (0.‘𝐾))
65 simpl2l 1107 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹𝑇)
6617, 58, 4, 5, 13trlid0b 34483 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6756, 65, 66syl2anc 691 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
6864, 67mpbird 246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
6968coeq1d 5205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
7056, 57, 23syl2anc 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺:𝐵1-1-onto𝐵)
7170, 25, 263syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
7269, 71eqtrd 2644 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐹𝐺) = 𝐺)
7372fveq2d 6107 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅‘(𝐹𝐺)) = (𝑅𝐺))
7463, 64, 733netr4d 2859 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
75 simp1 1054 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simp2l 1080 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
7758, 33, 4, 5, 13trlator0 34476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7875, 76, 77syl2anc 691 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
7954, 74, 78mpjaodan 823 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) ≠ (𝑅𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) ≠ (𝑅‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583   I cid 4948  ccnv 5037  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  0.cp0 16860  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464
This theorem is referenced by:  trljco  35046  cdlemh2  35122  cdlemh  35123  cdlemk3  35139  cdlemk12  35156  cdlemk12u  35178  cdlemkfid1N  35227  cdlemk54  35264
  Copyright terms: Public domain W3C validator