Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Visualization version   GIF version

Theorem trlcl 34469
 Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b 𝐵 = (Base‘𝐾)
trlcl.h 𝐻 = (LHyp‘𝐾)
trlcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcl.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2610 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2610 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2610 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 34322 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
65adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
7 eqid 2610 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2610 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlcl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlcl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 34468 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1417 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 33668 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 758 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 33667 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 758 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 trlcl.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 4lhpbase 34302 . . . . . 6 (𝑊𝐻𝑊𝐵)
1918ad2antlr 759 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊𝐵)
2017, 2opoccl 33499 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2116, 19, 20syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2217, 4, 9ltrncl 34429 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2321, 22mpd3an3 1417 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2417, 7latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2514, 21, 23, 24syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2617, 8latmcl 16875 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵𝑊𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2714, 25, 19, 26syl3anc 1318 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2812, 27eqeltrd 2688 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  joincjn 16767  meetcmee 16768  Latclat 16868  OPcops 33477  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464 This theorem is referenced by:  trljat1  34471  trljat2  34472  trlval3  34492  cdlemc3  34498  cdlemc5  34500  trlord  34875  cdlemg4c  34918  cdlemg4  34923  cdlemg6c  34926  cdlemg10c  34945  cdlemg10  34947  cdlemg12e  34953  cdlemg17dALTN  34970  cdlemg31a  35003  cdlemg31b  35004  cdlemg35  35019  cdlemg44a  35037  trljco  35046  trljco2  35047  tendoidcl  35075  tendococl  35078  tendoid  35079  tendopltp  35086  tendo0tp  35095  cdlemh1  35121  cdlemh2  35122  cdlemi1  35124  cdlemi  35126  cdlemk9  35145  cdlemk9bN  35146  cdlemkvcl  35148  cdlemk10  35149  cdlemk11  35155  cdlemk11u  35177  cdlemk37  35220  cdlemkfid1N  35227  cdlemkid1  35228  cdlemkid2  35230  cdlemk39s-id  35246  cdlemk48  35256  cdlemk50  35258  cdlemk51  35259  cdlemk52  35260  cdlemk39u  35274  tendoex  35281  dialss  35353  dia0  35359  diaglbN  35362  dia1dim  35368  dia2dimlem2  35372  dia2dimlem3  35373  dia2dimlem10  35380  cdlemm10N  35425  dib1dim  35472  diblss  35477  cdlemn2a  35503  dih1dimb  35547  dihopelvalcpre  35555  dih1  35593  dihmeetlem1N  35597  dihglblem5apreN  35598  dihglbcpreN  35607  dih1dimatlem  35636
 Copyright terms: Public domain W3C validator