Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trl0 Structured version   Visualization version   GIF version

Theorem trl0 34475
Description: If an atom not under the fiducial co-atom 𝑊 equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
trl0.l = (le‘𝐾)
trl0.z 0 = (0.‘𝐾)
trl0.a 𝐴 = (Atoms‘𝐾)
trl0.h 𝐻 = (LHyp‘𝐾)
trl0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trl0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )

Proof of Theorem trl0
StepHypRef Expression
1 simp1 1054 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1082 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
3 simp2 1055 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 trl0.l . . . 4 = (le‘𝐾)
5 eqid 2610 . . . 4 (join‘𝐾) = (join‘𝐾)
6 eqid 2610 . . . 4 (meet‘𝐾) = (meet‘𝐾)
7 trl0.a . . . 4 𝐴 = (Atoms‘𝐾)
8 trl0.h . . . 4 𝐻 = (LHyp‘𝐾)
9 trl0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trl0.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10trlval2 34468 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
121, 2, 3, 11syl3anc 1318 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
13 simp3r 1083 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
1413oveq2d 6565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = (𝑃(join‘𝐾)𝑃))
15 simp1l 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐾 ∈ HL)
16 simp2l 1080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝑃𝐴)
175, 7hlatjidm 33673 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1815, 16, 17syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1914, 18eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = 𝑃)
2019oveq1d 6564 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊) = (𝑃(meet‘𝐾)𝑊))
21 trl0.z . . . 4 0 = (0.‘𝐾)
224, 6, 21, 7, 8lhpmat 34334 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃(meet‘𝐾)𝑊) = 0 )
231, 3, 22syl2anc 691 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(meet‘𝐾)𝑊) = 0 )
2412, 20, 233eqtrd 2648 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  meetcmee 16768  0.cp0 16860  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464
This theorem is referenced by:  trlator0  34476  ltrnnidn  34479  trlid0  34481  trlnidatb  34482  trlnle  34491  trlval3  34492  trlval4  34493  cdlemc6  34501  cdlemg31d  35006
  Copyright terms: Public domain W3C validator