MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trinxp Structured version   Visualization version   GIF version

Theorem trinxp 5440
Description: The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square Cartesian product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trinxp ((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem trinxp
StepHypRef Expression
1 xpidtr 5437 . 2 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
2 trin2 5438 . 2 (((𝑅𝑅) ⊆ 𝑅 ∧ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
31, 2mpan2 703 1 ((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3539  wss 3540   × cxp 5036  ccom 5042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-co 5047
This theorem is referenced by:  psss  17037
  Copyright terms: Public domain W3C validator