MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin Structured version   Visualization version   GIF version

Theorem trin 4691
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))

Proof of Theorem trin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 trss 4689 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
3 trss 4689 . . . . . 6 (Tr 𝐵 → (𝑥𝐵𝑥𝐵))
42, 3im2anan9 876 . . . . 5 ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵)))
51, 4syl5bi 231 . . . 4 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝐵)))
6 ssin 3797 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
75, 6syl6ib 240 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → 𝑥 ⊆ (𝐴𝐵)))
87ralrimiv 2948 . 2 ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
9 dftr3 4684 . 2 (Tr (𝐴𝐵) ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
108, 9sylibr 223 1 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  cin 3539  wss 3540  Tr wtr 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681
This theorem is referenced by:  ordin  5670  tcmin  8500  ingru  9516  gruina  9519  dfon2lem4  30935
  Copyright terms: Public domain W3C validator