Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelded Structured version   Visualization version   GIF version

Theorem trelded 37802
Description: Deduction form of trel 4687. In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
trelded.1 (𝜑 → Tr 𝐴)
trelded.2 (𝜓𝐵𝐶)
trelded.3 (𝜒𝐶𝐴)
Assertion
Ref Expression
trelded ((𝜑𝜓𝜒) → 𝐵𝐴)

Proof of Theorem trelded
StepHypRef Expression
1 trelded.1 . 2 (𝜑 → Tr 𝐴)
2 trelded.2 . 2 (𝜓𝐵𝐶)
3 trelded.3 . 2 (𝜒𝐶𝐴)
4 trel 4687 . . 3 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
543impib 1254 . 2 ((Tr 𝐴𝐵𝐶𝐶𝐴) → 𝐵𝐴)
61, 2, 3, 5syl3an 1360 1 ((𝜑𝜓𝜒) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031  wcel 1977  Tr wtr 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681
This theorem is referenced by:  suctrALT3  38182
  Copyright terms: Public domain W3C validator