Step | Hyp | Ref
| Expression |
1 | | cotr 5427 |
. . . . . . . . . 10
⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ∀𝑎∀𝑏∀𝑐((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐)) |
2 | | sp 2041 |
. . . . . . . . . . 11
⊢
(∀𝑎∀𝑏∀𝑐((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ∀𝑏∀𝑐((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐)) |
3 | 2 | 19.21bbi 2048 |
. . . . . . . . . 10
⊢
(∀𝑎∀𝑏∀𝑐((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐)) |
4 | 1, 3 | sylbi 206 |
. . . . . . . . 9
⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 → ((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐)) |
5 | 4 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → ((𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐) → 𝑎𝑟𝑐)) |
6 | 5 | a2i 14 |
. . . . . . 7
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)) |
7 | 6 | alimi 1730 |
. . . . . 6
⊢
(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)) |
8 | 7 | ax-gen 1713 |
. . . . 5
⊢
∀𝑐(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)) |
9 | 8 | ax-gen 1713 |
. . . 4
⊢
∀𝑏∀𝑐(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)) |
10 | 9 | ax-gen 1713 |
. . 3
⊢
∀𝑎∀𝑏∀𝑐(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)) |
11 | | brtrclfv 13591 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑎(t+‘𝑅)𝑏 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏))) |
12 | | brtrclfv 13591 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑏(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))) |
13 | 11, 12 | anbi12d 743 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))) |
14 | | jcab 903 |
. . . . . . . . 9
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) ↔ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))) |
15 | 14 | albii 1737 |
. . . . . . . 8
⊢
(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) ↔ ∀𝑟(((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))) |
16 | | 19.26 1786 |
. . . . . . . 8
⊢
(∀𝑟(((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))) |
17 | 15, 16 | bitri 263 |
. . . . . . 7
⊢
(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))) |
18 | 13, 17 | syl6bbr 277 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)))) |
19 | | brtrclfv 13591 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑎(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))) |
20 | 18, 19 | imbi12d 333 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))) |
21 | 20 | albidv 1836 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (∀𝑐((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑐(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))) |
22 | 21 | 2albidv 1838 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (∀𝑎∀𝑏∀𝑐((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑎∀𝑏∀𝑐(∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏 ∧ 𝑏𝑟𝑐)) → ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))) |
23 | 10, 22 | mpbiri 247 |
. 2
⊢ (𝑅 ∈ 𝑉 → ∀𝑎∀𝑏∀𝑐((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐)) |
24 | | cotr 5427 |
. 2
⊢
(((t+‘𝑅)
∘ (t+‘𝑅))
⊆ (t+‘𝑅) ↔
∀𝑎∀𝑏∀𝑐((𝑎(t+‘𝑅)𝑏 ∧ 𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐)) |
25 | 23, 24 | sylibr 223 |
1
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |