Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tr0 Structured version   Visualization version   GIF version

Theorem tr0 4692
 Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0 Tr ∅

Proof of Theorem tr0
StepHypRef Expression
1 0ss 3924 . 2 ∅ ⊆ 𝒫 ∅
2 dftr4 4685 . 2 (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅)
31, 2mpbir 220 1 Tr ∅
 Colors of variables: wff setvar class Syntax hints:   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  Tr wtr 4680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-uni 4373  df-tr 4681 This theorem is referenced by:  ord0  5694  tctr  8499  tc0  8506  r1tr  8522
 Copyright terms: Public domain W3C validator