Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tr0 | Structured version Visualization version GIF version |
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
tr0 | ⊢ Tr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3924 | . 2 ⊢ ∅ ⊆ 𝒫 ∅ | |
2 | dftr4 4685 | . 2 ⊢ (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅) | |
3 | 1, 2 | mpbir 220 | 1 ⊢ Tr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3540 ∅c0 3874 𝒫 cpw 4108 Tr wtr 4680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 df-nul 3875 df-pw 4110 df-uni 4373 df-tr 4681 |
This theorem is referenced by: ord0 5694 tctr 8499 tc0 8506 r1tr 8522 |
Copyright terms: Public domain | W3C validator |