Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > totprobd | Structured version Visualization version GIF version |
Description: Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
totprobd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
totprobd.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) |
totprobd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) |
totprobd.4 | ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) |
totprobd.5 | ⊢ (𝜑 → 𝐵 ≼ ω) |
totprobd.6 | ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) |
Ref | Expression |
---|---|
totprobd | ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | totprobd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) | |
2 | elssuni 4403 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ∪ dom 𝑃) |
4 | totprobd.4 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) | |
5 | 3, 4 | sseqtr4d 3605 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
6 | sseqin2 3779 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ (∪ 𝐵 ∩ 𝐴) = 𝐴) | |
7 | 5, 6 | sylib 207 | . . 3 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) = 𝐴) |
8 | 7 | fveq2d 6107 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = (𝑃‘𝐴)) |
9 | totprobd.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
10 | domprobmeas 29799 | . . . . . 6 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (measures‘dom 𝑃)) |
12 | measinb 29611 | . . . . 5 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ dom 𝑃) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) | |
13 | 11, 1, 12 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) |
14 | totprobd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) | |
15 | totprobd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ≼ ω) | |
16 | totprobd.6 | . . . 4 ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) | |
17 | measvun 29599 | . . . 4 ⊢ (((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃) ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏)) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) | |
18 | 13, 14, 15, 16, 17 | syl112anc 1322 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) |
19 | eqidd 2611 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
20 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → 𝑐 = ∪ 𝐵) | |
21 | 20 | ineq1d 3775 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑐 ∩ 𝐴) = (∪ 𝐵 ∩ 𝐴)) |
22 | 21 | fveq2d 6107 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
23 | domprobsiga 29800 | . . . . . 6 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
25 | sigaclcu 29507 | . . . . 5 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ dom 𝑃) | |
26 | 24, 14, 15, 25 | syl3anc 1318 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 ∈ dom 𝑃) |
27 | inelsiga 29525 | . . . . . 6 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∪ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) | |
28 | 24, 26, 1, 27 | syl3anc 1318 | . . . . 5 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) |
29 | prob01 29802 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) | |
30 | 9, 28, 29 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) |
31 | 19, 22, 26, 30 | fvmptd 6197 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
32 | eqidd 2611 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
33 | simpr 476 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → 𝑐 = 𝑏) | |
34 | 33 | ineq1d 3775 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑐 ∩ 𝐴) = (𝑏 ∩ 𝐴)) |
35 | 34 | fveq2d 6107 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(𝑏 ∩ 𝐴))) |
36 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
37 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐵 ∈ 𝒫 dom 𝑃) |
38 | elelpwi 4119 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 dom 𝑃) → 𝑏 ∈ dom 𝑃) | |
39 | 36, 37, 38 | syl2anc 691 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ dom 𝑃) |
40 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑃 ∈ Prob) |
41 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → dom 𝑃 ∈ ∪ ran sigAlgebra) |
42 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ dom 𝑃) |
43 | inelsiga 29525 | . . . . . . 7 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝑏 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) | |
44 | 41, 39, 42, 43 | syl3anc 1318 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) |
45 | prob01 29802 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ (𝑏 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) | |
46 | 40, 44, 45 | syl2anc 691 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) |
47 | 32, 35, 39, 46 | fvmptd 6197 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = (𝑃‘(𝑏 ∩ 𝐴))) |
48 | 47 | esumeq2dv 29427 | . . 3 ⊢ (𝜑 → Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
49 | 18, 31, 48 | 3eqtr3d 2652 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
50 | 8, 49 | eqtr3d 2646 | 1 ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 Disj wdisj 4553 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 ran crn 5039 ‘cfv 5804 (class class class)co 6549 ωcom 6957 ≼ cdom 7839 0cc0 9815 1c1 9816 [,]cicc 12049 Σ*cesum 29416 sigAlgebracsiga 29497 measurescmeas 29585 Probcprb 29796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-ac2 9168 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-disj 4554 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-acn 8651 df-ac 8822 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-fac 12923 df-bc 12952 df-hash 12980 df-shft 13655 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 df-ef 14637 df-sin 14639 df-cos 14640 df-pi 14642 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-ordt 15984 df-xrs 15985 df-qtop 15990 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-ps 17023 df-tsr 17024 df-plusf 17064 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-cntz 17573 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-subrg 18601 df-abv 18640 df-lmod 18688 df-scaf 18689 df-sra 18993 df-rgmod 18994 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lp 20750 df-perf 20751 df-cn 20841 df-cnp 20842 df-haus 20929 df-tx 21175 df-hmeo 21368 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-tmd 21686 df-tgp 21687 df-tsms 21740 df-trg 21773 df-xms 21935 df-ms 21936 df-tms 21937 df-nm 22197 df-ngp 22198 df-nrg 22200 df-nlm 22201 df-ii 22488 df-cncf 22489 df-limc 23436 df-dv 23437 df-log 24107 df-esum 29417 df-siga 29498 df-meas 29586 df-prob 29797 |
This theorem is referenced by: totprob 29816 |
Copyright terms: Public domain | W3C validator |