Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topjoin Structured version   Visualization version   GIF version

Theorem topjoin 31530
Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topjoin ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topjoin
StepHypRef Expression
1 topontop 20541 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ Top)
21ad2antrl 760 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑘 ∈ Top)
3 toponmax 20543 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋𝑘)
43ad2antrl 760 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑋𝑘)
54snssd 4281 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → {𝑋} ⊆ 𝑘)
6 simprr 792 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ∀𝑗𝑆 𝑗𝑘)
7 unissb 4405 . . . . . . . 8 ( 𝑆𝑘 ↔ ∀𝑗𝑆 𝑗𝑘)
86, 7sylibr 223 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑆𝑘)
95, 8unssd 3751 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ({𝑋} ∪ 𝑆) ⊆ 𝑘)
10 tgfiss 20606 . . . . . 6 ((𝑘 ∈ Top ∧ ({𝑋} ∪ 𝑆) ⊆ 𝑘) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
112, 9, 10syl2anc 691 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
1211expr 641 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋)) → (∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1312ralrimiva 2949 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
14 ssintrab 4435 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1513, 14sylibr 223 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
16 fibas 20592 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ∈ TopBases
17 tgtopon 20586 . . . . . 6 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
1816, 17ax-mp 5 . . . . 5 (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆)))
19 uniun 4392 . . . . . . . 8 ({𝑋} ∪ 𝑆) = ( {𝑋} ∪ 𝑆)
20 unisng 4388 . . . . . . . . . 10 (𝑋𝑉 {𝑋} = 𝑋)
2120adantr 480 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑋} = 𝑋)
2221uneq1d 3728 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ( {𝑋} ∪ 𝑆) = (𝑋 𝑆))
2319, 22syl5req 2657 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = ({𝑋} ∪ 𝑆))
24 simpr 476 . . . . . . . . . . 11 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ (TopOn‘𝑋))
25 toponuni 20542 . . . . . . . . . . . . . . 15 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
26 eqimss2 3621 . . . . . . . . . . . . . . 15 (𝑋 = 𝑘 𝑘𝑋)
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
28 sspwuni 4547 . . . . . . . . . . . . . 14 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
2927, 28sylibr 223 . . . . . . . . . . . . 13 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
30 selpw 4115 . . . . . . . . . . . . 13 (𝑘 ∈ 𝒫 𝒫 𝑋𝑘 ⊆ 𝒫 𝑋)
3129, 30sylibr 223 . . . . . . . . . . . 12 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ 𝒫 𝒫 𝑋)
3231ssriv 3572 . . . . . . . . . . 11 (TopOn‘𝑋) ⊆ 𝒫 𝒫 𝑋
3324, 32syl6ss 3580 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝒫 𝑋)
34 sspwuni 4547 . . . . . . . . . 10 (𝑆 ⊆ 𝒫 𝒫 𝑋 𝑆 ⊆ 𝒫 𝑋)
3533, 34sylib 207 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝑋)
36 sspwuni 4547 . . . . . . . . 9 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
3735, 36sylib 207 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆𝑋)
38 ssequn2 3748 . . . . . . . 8 ( 𝑆𝑋 ↔ (𝑋 𝑆) = 𝑋)
3937, 38sylib 207 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = 𝑋)
40 snex 4835 . . . . . . . . 9 {𝑋} ∈ V
41 fvex 6113 . . . . . . . . . . . 12 (TopOn‘𝑋) ∈ V
4241ssex 4730 . . . . . . . . . . 11 (𝑆 ⊆ (TopOn‘𝑋) → 𝑆 ∈ V)
4342adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
44 uniexg 6853 . . . . . . . . . 10 (𝑆 ∈ V → 𝑆 ∈ V)
4543, 44syl 17 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
46 unexg 6857 . . . . . . . . 9 (({𝑋} ∈ V ∧ 𝑆 ∈ V) → ({𝑋} ∪ 𝑆) ∈ V)
4740, 45, 46sylancr 694 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ∈ V)
48 fiuni 8217 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4947, 48syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
5023, 39, 493eqtr3d 2652 . . . . . 6 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑋 = (fi‘({𝑋} ∪ 𝑆)))
5150fveq2d 6107 . . . . 5 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
5218, 51syl5eleqr 2695 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋))
53 elssuni 4403 . . . . . . . 8 (𝑗𝑆𝑗 𝑆)
54 ssun2 3739 . . . . . . . 8 𝑆 ⊆ ({𝑋} ∪ 𝑆)
5553, 54syl6ss 3580 . . . . . . 7 (𝑗𝑆𝑗 ⊆ ({𝑋} ∪ 𝑆))
56 ssfii 8208 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5747, 56syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5855, 57sylan9ssr 3582 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (fi‘({𝑋} ∪ 𝑆)))
59 bastg 20581 . . . . . . 7 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6016, 59ax-mp 5 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))
6158, 60syl6ss 3580 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6261ralrimiva 2949 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
63 sseq2 3590 . . . . . 6 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (𝑗𝑘𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6463ralbidv 2969 . . . . 5 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (∀𝑗𝑆 𝑗𝑘 ↔ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6564elrab 3331 . . . 4 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6652, 62, 65sylanbrc 695 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
67 intss1 4427 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6866, 67syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6915, 68eqssd 3585 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cun 3538  wss 3540  𝒫 cpw 4108  {csn 4125   cuni 4372   cint 4410  cfv 5804  ficfi 8199  topGenctg 15921  Topctop 20517  TopOnctopon 20518  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator