Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topgele | Structured version Visualization version GIF version |
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topgele | ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 20541 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 0opn 20534 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) |
4 | toponmax 20543 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
5 | 0ex 4718 | . . . 4 ⊢ ∅ ∈ V | |
6 | prssg 4290 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝐽) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) | |
7 | 5, 4, 6 | sylancr 694 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) |
8 | 3, 4, 7 | mpbi2and 958 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽) |
9 | toponuni 20542 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
10 | eqimss2 3621 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝑋) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 ⊆ 𝑋) |
12 | sspwuni 4547 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
13 | 11, 12 | sylibr 223 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
14 | 8, 13 | jca 553 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 ∅c0 3874 𝒫 cpw 4108 {cpr 4127 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 TopOnctopon 20518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-top 20521 df-topon 20523 |
This theorem is referenced by: topsn 20550 txindis 21247 dissneqlem 32363 ntrf2 37442 |
Copyright terms: Public domain | W3C validator |