Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinf | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology if and only if 𝐴 is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinf | ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | . . . 4 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
2 | 1 | topdifinffin 32372 | . . 3 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
3 | 1 | topdifinfindis 32370 | . . . 4 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
4 | indistopon 20615 | . . . 4 ⊢ (𝐴 ∈ Fin → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | eqeltrd 2688 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑇 ∈ (TopOn‘𝐴)) |
6 | 2, 5 | impbii 198 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) |
7 | 2, 3 | syl 17 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴}) |
8 | 6, 7 | pm3.2i 470 | 1 ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ∖ cdif 3537 ∅c0 3874 𝒫 cpw 4108 {cpr 4127 ‘cfv 5804 Fincfn 7841 TopOnctopon 20518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-fin 7845 df-topgen 15927 df-top 20521 df-topon 20523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |