MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topbas Structured version   Visualization version   GIF version

Theorem topbas 20587
Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
topbas (𝐽 ∈ Top → 𝐽 ∈ TopBases)

Proof of Theorem topbas
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 20529 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝐽) → (𝑥𝑦) ∈ 𝐽)
213expb 1258 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ∈ 𝐽)
32adantr 480 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑥𝑦) ∈ 𝐽)
4 simpr 476 . . . . . . 7 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
5 ssid 3587 . . . . . . 7 (𝑥𝑦) ⊆ (𝑥𝑦)
64, 5jctir 559 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)))
7 eleq2 2677 . . . . . . . 8 (𝑤 = (𝑥𝑦) → (𝑧𝑤𝑧 ∈ (𝑥𝑦)))
8 sseq1 3589 . . . . . . . 8 (𝑤 = (𝑥𝑦) → (𝑤 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
97, 8anbi12d 743 . . . . . . 7 (𝑤 = (𝑥𝑦) → ((𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))))
109rspcev 3282 . . . . . 6 (((𝑥𝑦) ∈ 𝐽 ∧ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
113, 6, 10syl2anc 691 . . . . 5 (((𝐽 ∈ Top ∧ (𝑥𝐽𝑦𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1211exp31 628 . . . 4 (𝐽 ∈ Top → ((𝑥𝐽𝑦𝐽) → (𝑧 ∈ (𝑥𝑦) → ∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
1312ralrimdv 2951 . . 3 (𝐽 ∈ Top → ((𝑥𝐽𝑦𝐽) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1413ralrimivv 2953 . 2 (𝐽 ∈ Top → ∀𝑥𝐽𝑦𝐽𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
15 isbasis2g 20563 . 2 (𝐽 ∈ Top → (𝐽 ∈ TopBases ↔ ∀𝑥𝐽𝑦𝐽𝑧 ∈ (𝑥𝑦)∃𝑤𝐽 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1614, 15mpbird 246 1 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540  Topctop 20517  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-pw 4110  df-uni 4373  df-top 20521  df-bases 20522
This theorem is referenced by:  resttop  20774  dis1stc  21112  txtop  21182  onpsstopbas  31599
  Copyright terms: Public domain W3C validator