Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tngnrg | Structured version Visualization version GIF version |
Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tngnrg.t | ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) |
tngnrg.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
tngnrg | ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngnrg.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 18644 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | ringgrp 18375 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
5 | tngnrg.t | . . . . 5 ⊢ 𝑇 = (𝑅 toNrmGrp 𝐹) | |
6 | eqid 2610 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
7 | 5, 6 | tngds 22262 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) = (dist‘𝑇)) |
8 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 1, 6 | abvmet 22190 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∘ (-g‘𝑅)) ∈ (Met‘(Base‘𝑅))) |
10 | 7, 9 | eqeltrrd 2689 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (dist‘𝑇) ∈ (Met‘(Base‘𝑅))) |
11 | 1, 8 | abvf 18646 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹:(Base‘𝑅)⟶ℝ) |
12 | eqid 2610 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
13 | 5, 8, 12 | tngngp2 22266 | . . . 4 ⊢ (𝐹:(Base‘𝑅)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝑇 ∈ NrmGrp ↔ (𝑅 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝑅))))) |
15 | 4, 10, 14 | mpbir2and 959 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmGrp) |
16 | reex 9906 | . . . . . 6 ⊢ ℝ ∈ V | |
17 | 5, 8, 16 | tngnm 22265 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐹:(Base‘𝑅)⟶ℝ) → 𝐹 = (norm‘𝑇)) |
18 | 4, 11, 17 | syl2anc 691 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = (norm‘𝑇)) |
19 | eqidd 2611 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑅)) | |
20 | 5, 8 | tngbas 22255 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → (Base‘𝑅) = (Base‘𝑇)) |
21 | eqid 2610 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
22 | 5, 21 | tngplusg 22256 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (+g‘𝑅) = (+g‘𝑇)) |
23 | 22 | oveqdr 6573 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
24 | eqid 2610 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
25 | 5, 24 | tngmulr 22258 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → (.r‘𝑅) = (.r‘𝑇)) |
26 | 25 | oveqdr 6573 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
27 | 19, 20, 23, 26 | abvpropd 18665 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (AbsVal‘𝑅) = (AbsVal‘𝑇)) |
28 | 1, 27 | syl5eq 2656 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐴 = (AbsVal‘𝑇)) |
29 | 18, 28 | eleq12d 2682 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
30 | 29 | ibi 255 | . 2 ⊢ (𝐹 ∈ 𝐴 → (norm‘𝑇) ∈ (AbsVal‘𝑇)) |
31 | eqid 2610 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
32 | eqid 2610 | . . 3 ⊢ (AbsVal‘𝑇) = (AbsVal‘𝑇) | |
33 | 31, 32 | isnrg 22274 | . 2 ⊢ (𝑇 ∈ NrmRing ↔ (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) ∈ (AbsVal‘𝑇))) |
34 | 15, 30, 33 | sylanbrc 695 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝑇 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∘ ccom 5042 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 Basecbs 15695 +gcplusg 15768 .rcmulr 15769 distcds 15777 Grpcgrp 17245 -gcsg 17247 Ringcrg 18370 AbsValcabv 18639 Metcme 19553 normcnm 22191 NrmGrpcngp 22192 toNrmGrp ctng 22193 NrmRingcnrg 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-seq 12664 df-exp 12723 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-mulr 15782 df-tset 15787 df-ds 15791 df-rest 15906 df-topn 15907 df-0g 15925 df-topgen 15927 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mgp 18313 df-ur 18325 df-ring 18372 df-abv 18640 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-xms 21935 df-ms 21936 df-nm 22197 df-ngp 22198 df-tng 22199 df-nrg 22200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |