Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptps Structured version   Visualization version   GIF version

Theorem tgptps 21694
 Description: A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgptps (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)

Proof of Theorem tgptps
StepHypRef Expression
1 tgptmd 21693 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tmdtps 21690 . 2 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
31, 2syl 17 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  TopSpctps 20519  TopMndctmd 21684  TopGrpctgp 21685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-tmd 21686  df-tgp 21687 This theorem is referenced by:  tgptopon  21696  istgp2  21705  tsmsinv  21761  tsmssub  21762  tgptsmscls  21763  tgptsmscld  21764  tsmsxplem1  21766  tsmsxp  21768  trgtps  21783  nrgtrg  22304
 Copyright terms: Public domain W3C validator