Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachltOLD Structured version   Visualization version   GIF version

Theorem tgoldbachltOLD 40237
Description: Obsolete version of tgoldbachlt 40230 as of 9-Sep-2021. (Contributed by AV, 4-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tgoldbachltOLD 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachltOLD
StepHypRef Expression
1 8nn0 11192 . . . 4 8 ∈ ℕ0
2 8nn 11068 . . . 4 8 ∈ ℕ
31, 2decnncl 11394 . . 3 88 ∈ ℕ
4 10nnOLD 11070 . . . 4 10 ∈ ℕ
5 2nn0 11186 . . . . 5 2 ∈ ℕ0
6 9nn0 11193 . . . . 5 9 ∈ ℕ0
75, 6deccl 11388 . . . 4 29 ∈ ℕ0
8 nnexpcl 12735 . . . 4 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
94, 7, 8mp2an 704 . . 3 (10↑29) ∈ ℕ
103, 9nnmulcli 10921 . 2 (88 · (10↑29)) ∈ ℕ
11 id 22 . . 3 ((88 · (10↑29)) ∈ ℕ → (88 · (10↑29)) ∈ ℕ)
12 breq2 4587 . . . . 5 (𝑚 = (88 · (10↑29)) → ((8 · (10↑30)) < 𝑚 ↔ (8 · (10↑30)) < (88 · (10↑29))))
13 breq2 4587 . . . . . . . 8 (𝑚 = (88 · (10↑29)) → (𝑛 < 𝑚𝑛 < (88 · (10↑29))))
1413anbi2d 736 . . . . . . 7 (𝑚 = (88 · (10↑29)) → ((7 < 𝑛𝑛 < 𝑚) ↔ (7 < 𝑛𝑛 < (88 · (10↑29)))))
1514imbi1d 330 . . . . . 6 (𝑚 = (88 · (10↑29)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ) ↔ ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
1615ralbidv 2969 . . . . 5 (𝑚 = (88 · (10↑29)) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ) ↔ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
1712, 16anbi12d 743 . . . 4 (𝑚 = (88 · (10↑29)) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))))
1817adantl 481 . . 3 (((88 · (10↑29)) ∈ ℕ ∧ 𝑚 = (88 · (10↑29))) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))))
19 simplr 788 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ Odd )
20 simprl 790 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 7 < 𝑛)
21 simprr 792 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 < (88 · (10↑29)))
22 tgblthelfgottOLD 40236 . . . . . . 7 ((𝑛 ∈ Odd ∧ 7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )
2319, 20, 21, 22syl3anc 1318 . . . . . 6 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ GoldbachOddALTV )
2423ex 449 . . . . 5 (((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) → ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))
2524ralrimiva 2949 . . . 4 ((88 · (10↑29)) ∈ ℕ → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV ))
262, 9nnmulcli 10921 . . . . . . 7 (8 · (10↑29)) ∈ ℕ
2726nngt0i 10931 . . . . . 6 0 < (8 · (10↑29))
2826nnrei 10906 . . . . . . 7 (8 · (10↑29)) ∈ ℝ
29 3nn0 11187 . . . . . . . . . . 11 3 ∈ ℕ0
30 0nn0 11184 . . . . . . . . . . 11 0 ∈ ℕ0
3129, 30deccl 11388 . . . . . . . . . 10 30 ∈ ℕ0
32 nnexpcl 12735 . . . . . . . . . 10 ((10 ∈ ℕ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℕ)
334, 31, 32mp2an 704 . . . . . . . . 9 (10↑30) ∈ ℕ
342, 33nnmulcli 10921 . . . . . . . 8 (8 · (10↑30)) ∈ ℕ
3534nnrei 10906 . . . . . . 7 (8 · (10↑30)) ∈ ℝ
3628, 35ltaddposi 10456 . . . . . 6 (0 < (8 · (10↑29)) ↔ (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29))))
3727, 36mpbi 219 . . . . 5 (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29)))
38 dfdecOLD 11371 . . . . . . 7 88 = ((10 · 8) + 8)
3938oveq1i 6559 . . . . . 6 (88 · (10↑29)) = (((10 · 8) + 8) · (10↑29))
404, 2nnmulcli 10921 . . . . . . . 8 (10 · 8) ∈ ℕ
4140nncni 10907 . . . . . . 7 (10 · 8) ∈ ℂ
42 8cn 10983 . . . . . . 7 8 ∈ ℂ
439nncni 10907 . . . . . . 7 (10↑29) ∈ ℂ
4441, 42, 43adddiri 9930 . . . . . 6 (((10 · 8) + 8) · (10↑29)) = (((10 · 8) · (10↑29)) + (8 · (10↑29)))
4541, 43mulcomi 9925 . . . . . . . . 9 ((10 · 8) · (10↑29)) = ((10↑29) · (10 · 8))
464nncni 10907 . . . . . . . . . 10 10 ∈ ℂ
4743, 46, 42mulassi 9928 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑29) · (10 · 8))
48 nncn 10905 . . . . . . . . . . . . 13 (10 ∈ ℕ → 10 ∈ ℂ)
497a1i 11 . . . . . . . . . . . . 13 (10 ∈ ℕ → 29 ∈ ℕ0)
5048, 49expp1d 12871 . . . . . . . . . . . 12 (10 ∈ ℕ → (10↑(29 + 1)) = ((10↑29) · 10))
514, 50ax-mp 5 . . . . . . . . . . 11 (10↑(29 + 1)) = ((10↑29) · 10)
5251eqcomi 2619 . . . . . . . . . 10 ((10↑29) · 10) = (10↑(29 + 1))
5352oveq1i 6559 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑(29 + 1)) · 8)
5445, 47, 533eqtr2i 2638 . . . . . . . 8 ((10 · 8) · (10↑29)) = ((10↑(29 + 1)) · 8)
5554oveq1i 6559 . . . . . . 7 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = (((10↑(29 + 1)) · 8) + (8 · (10↑29)))
56 2p1e3 11028 . . . . . . . . . . 11 (2 + 1) = 3
57 eqid 2610 . . . . . . . . . . 11 29 = 29
585, 56, 57decsucc 11426 . . . . . . . . . 10 (29 + 1) = 30
5958oveq2i 6560 . . . . . . . . 9 (10↑(29 + 1)) = (10↑30)
6059oveq1i 6559 . . . . . . . 8 ((10↑(29 + 1)) · 8) = ((10↑30) · 8)
6160oveq1i 6559 . . . . . . 7 (((10↑(29 + 1)) · 8) + (8 · (10↑29))) = (((10↑30) · 8) + (8 · (10↑29)))
6233nncni 10907 . . . . . . . 8 (10↑30) ∈ ℂ
63 mulcom 9901 . . . . . . . . 9 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → ((10↑30) · 8) = (8 · (10↑30)))
6463oveq1d 6564 . . . . . . . 8 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29))))
6562, 42, 64mp2an 704 . . . . . . 7 (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6655, 61, 653eqtri 2636 . . . . . 6 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6739, 44, 663eqtri 2636 . . . . 5 (88 · (10↑29)) = ((8 · (10↑30)) + (8 · (10↑29)))
6837, 67breqtrri 4610 . . . 4 (8 · (10↑30)) < (88 · (10↑29))
6925, 68jctil 558 . . 3 ((88 · (10↑29)) ∈ ℕ → ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOddALTV )))
7011, 18, 69rspcedvd 3289 . 2 ((88 · (10↑29)) ∈ ℕ → ∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV )))
7110, 70ax-mp 5 1 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOddALTV ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cn 10897  2c2 10947  3c3 10948  7c7 10952  8c8 10953  9c9 10954  10c10 10955  0cn0 11169  cdc 11369  cexp 12722   Odd codd 40076   GoldbachOddALTV cgboa 40169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-bgbltosilvaOLD 40233  ax-hgprmladderOLD 40235
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-10OLD 10964  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-iccp 39952  df-even 40077  df-odd 40078  df-gbe 40170  df-gboa 40172
This theorem is referenced by:  tgoldbachOLD  40239
  Copyright terms: Public domain W3C validator