Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti1 Structured version   Visualization version   GIF version

Theorem tghilberti1 25332
 Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti1
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . . 3 (𝜑𝑃𝐵)
6 tglineelsb2.2 . . 3 (𝜑𝑄𝐵)
7 tglineelsb2.4 . . 3 (𝜑𝑃𝑄)
81, 2, 3, 4, 5, 6, 7tgelrnln 25325 . 2 (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7tglinerflx1 25328 . 2 (𝜑𝑃 ∈ (𝑃𝐿𝑄))
101, 2, 3, 4, 5, 6, 7tglinerflx2 25329 . 2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
11 eleq2 2677 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑃𝑥𝑃 ∈ (𝑃𝐿𝑄)))
12 eleq2 2677 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑄𝑥𝑄 ∈ (𝑃𝐿𝑄)))
1311, 12anbi12d 743 . . 3 (𝑥 = (𝑃𝐿𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))))
1413rspcev 3282 . 2 (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
158, 9, 10, 14syl12anc 1316 1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ran crn 5039  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152 This theorem is referenced by:  tglinethrueu  25334
 Copyright terms: Public domain W3C validator