MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem9a Structured version   Visualization version   GIF version

Theorem tfrlem9a 7369
Description: Lemma for transfinite recursion. Without using ax-rep 4699, show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem9a (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem9a
Dummy variables 𝑔 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem7 7366 . . . 4 Fun recs(𝐹)
3 funfvop 6237 . . . 4 ((Fun recs(𝐹) ∧ 𝐵 ∈ dom recs(𝐹)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
42, 3mpan 702 . . 3 (𝐵 ∈ dom recs(𝐹) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹))
51recsfval 7364 . . . . 5 recs(𝐹) = 𝐴
65eleq2i 2680 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴)
7 eluni 4375 . . . 4 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
86, 7bitri 263 . . 3 (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
94, 8sylib 207 . 2 (𝐵 ∈ dom recs(𝐹) → ∃𝑔(⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴))
10 simprr 792 . . . 4 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → 𝑔𝐴)
11 vex 3176 . . . . 5 𝑔 ∈ V
121, 11tfrlem3a 7360 . . . 4 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
1310, 12sylib 207 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
142a1i 11 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Fun recs(𝐹))
15 simplrr 797 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔𝐴)
16 elssuni 4403 . . . . . . . . . 10 (𝑔𝐴𝑔 𝐴)
1715, 16syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 𝐴)
1817, 5syl6sseqr 3615 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑔 ⊆ recs(𝐹))
19 fndm 5904 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
2019ad2antll 761 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 = 𝑧)
21 simprl 790 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝑧 ∈ On)
2220, 21eqeltrd 2688 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → dom 𝑔 ∈ On)
23 eloni 5650 . . . . . . . . . 10 (dom 𝑔 ∈ On → Ord dom 𝑔)
2422, 23syl 17 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → Ord dom 𝑔)
25 simpll 786 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom recs(𝐹))
26 fvex 6113 . . . . . . . . . . 11 (recs(𝐹)‘𝐵) ∈ V
2726a1i 11 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹)‘𝐵) ∈ V)
28 simplrl 796 . . . . . . . . . . 11 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
29 df-br 4584 . . . . . . . . . . 11 (𝐵𝑔(recs(𝐹)‘𝐵) ↔ ⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔)
3028, 29sylibr 223 . . . . . . . . . 10 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵𝑔(recs(𝐹)‘𝐵))
31 breldmg 5252 . . . . . . . . . 10 ((𝐵 ∈ dom recs(𝐹) ∧ (recs(𝐹)‘𝐵) ∈ V ∧ 𝐵𝑔(recs(𝐹)‘𝐵)) → 𝐵 ∈ dom 𝑔)
3225, 27, 30, 31syl3anc 1318 . . . . . . . . 9 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ∈ dom 𝑔)
33 ordelss 5656 . . . . . . . . 9 ((Ord dom 𝑔𝐵 ∈ dom 𝑔) → 𝐵 ⊆ dom 𝑔)
3424, 32, 33syl2anc 691 . . . . . . . 8 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → 𝐵 ⊆ dom 𝑔)
35 fun2ssres 5845 . . . . . . . 8 ((Fun recs(𝐹) ∧ 𝑔 ⊆ recs(𝐹) ∧ 𝐵 ⊆ dom 𝑔) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3614, 18, 34, 35syl3anc 1318 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) = (𝑔𝐵))
3711resex 5363 . . . . . . . 8 (𝑔𝐵) ∈ V
3837a1i 11 . . . . . . 7 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (𝑔𝐵) ∈ V)
3936, 38eqeltrd 2688 . . . . . 6 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ (𝑧 ∈ On ∧ 𝑔 Fn 𝑧)) → (recs(𝐹) ↾ 𝐵) ∈ V)
4039expr 641 . . . . 5 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → (𝑔 Fn 𝑧 → (recs(𝐹) ↾ 𝐵) ∈ V))
4140adantrd 483 . . . 4 (((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) ∧ 𝑧 ∈ On) → ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4241rexlimdva 3013 . . 3 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) → (recs(𝐹) ↾ 𝐵) ∈ V))
4313, 42mpd 15 . 2 ((𝐵 ∈ dom recs(𝐹) ∧ (⟨𝐵, (recs(𝐹)‘𝐵)⟩ ∈ 𝑔𝑔𝐴)) → (recs(𝐹) ↾ 𝐵) ∈ V)
449, 43exlimddv 1850 1 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173  wss 3540  cop 4131   cuni 4372   class class class wbr 4583  dom cdm 5038  cres 5040  Ord word 5639  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  cfv 5804  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  tfrlem15  7375  tfrlem16  7376  rdgseg  7405
  Copyright terms: Public domain W3C validator