MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem7 Structured version   Visualization version   GIF version

Theorem tfrlem7 7366
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem7 Fun recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem7
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem6 7365 . 2 Rel recs(𝐹)
31recsfval 7364 . . . . . . . . 9 recs(𝐹) = 𝐴
43eleq2i 2680 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐴)
5 eluni 4375 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
64, 5bitri 263 . . . . . . 7 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
73eleq2i 2680 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐴)
8 eluni 4375 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐴 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
97, 8bitri 263 . . . . . . 7 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
106, 9anbi12i 729 . . . . . 6 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
11 eeanv 2170 . . . . . 6 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
1210, 11bitr4i 266 . . . . 5 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)))
13 df-br 4584 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
14 df-br 4584 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1513, 14anbi12i 729 . . . . . . . 8 ((𝑥𝑔𝑢𝑥𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ))
161tfrlem5 7363 . . . . . . . . 9 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1716impcom 445 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1815, 17sylanbr 489 . . . . . . 7 (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1918an4s 865 . . . . . 6 (((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2019exlimivv 1847 . . . . 5 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2112, 20sylbi 206 . . . 4 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2221ax-gen 1713 . . 3 𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2322gen2 1714 . 2 𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
24 dffun4 5816 . 2 (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)))
252, 23, 24mpbir2an 957 1 Fun recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  cop 4131   cuni 4372   class class class wbr 4583  cres 5040  Rel wrel 5043  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  cfv 5804  recscrecs 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-wrecs 7294  df-recs 7355
This theorem is referenced by:  tfrlem9  7368  tfrlem9a  7369  tfrlem10  7370  tfrlem14  7374  tfrlem16  7376  tfr1a  7377  tfr1  7380
  Copyright terms: Public domain W3C validator