MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   GIF version

Theorem tfrlem13 7350
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem13 ¬ recs(𝐹) ∈ V
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 7344 . . 3 Ord dom recs(𝐹)
3 ordirr 5644 . . 3 (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹))
42, 3ax-mp 5 . 2 ¬ dom recs(𝐹) ∈ dom recs(𝐹)
5 eqid 2609 . . . . 5 (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
61, 5tfrlem12 7349 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴)
7 elssuni 4397 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ 𝐴)
81recsfval 7341 . . . . 5 recs(𝐹) = 𝐴
97, 8syl6sseqr 3614 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹))
10 dmss 5232 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
116, 9, 103syl 18 . . 3 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
122a1i 11 . . . . . 6 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
13 dmexg 6966 . . . . . 6 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
14 elon2 5637 . . . . . 6 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
1512, 13, 14sylanbrc 694 . . . . 5 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
16 sucidg 5706 . . . . 5 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
1715, 16syl 17 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹))
181, 5tfrlem10 7347 . . . . 5 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
19 fndm 5890 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2015, 18, 193syl 18 . . . 4 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2117, 20eleqtrrd 2690 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
2211, 21sseldd 3568 . 2 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹))
234, 22mto 186 1 ¬ recs(𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  {cab 2595  wral 2895  wrex 2896  Vcvv 3172  cun 3537  wss 3539  {csn 4124  cop 4130   cuni 4366  dom cdm 5028  cres 5030  Ord word 5625  Oncon0 5626  suc csuc 5628   Fn wfn 5785  cfv 5790  recscrecs 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-fv 5798  df-wrecs 7271  df-recs 7332
This theorem is referenced by:  tfrlem14  7351  tfrlem15  7352  tfrlem16  7353  tfr2b  7356
  Copyright terms: Public domain W3C validator