MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   GIF version

Theorem tfrlem10 7347
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 7351, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem10 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 6098 . . . . . . 7 (𝐹‘recs(𝐹)) ∈ V
2 funsng 5837 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
31, 2mpan2 702 . . . . . 6 (dom recs(𝐹) ∈ On → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4 tfrlem.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
54tfrlem7 7343 . . . . . 6 Fun recs(𝐹)
63, 5jctil 557 . . . . 5 (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
71dmsnop 5513 . . . . . . 7 dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} = {dom recs(𝐹)}
87ineq2i 3772 . . . . . 6 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∩ {dom recs(𝐹)})
94tfrlem8 7344 . . . . . . 7 Ord dom recs(𝐹)
10 orddisj 5665 . . . . . . 7 (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅)
119, 10ax-mp 5 . . . . . 6 (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅
128, 11eqtri 2631 . . . . 5 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅
13 funun 5832 . . . . 5 (((Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅) → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
146, 12, 13sylancl 692 . . . 4 (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
157uneq2i 3725 . . . . 5 (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
16 dmun 5240 . . . . 5 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
17 df-suc 5632 . . . . 5 suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
1815, 16, 173eqtr4i 2641 . . . 4 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)
1914, 18jctir 558 . . 3 (dom recs(𝐹) ∈ On → (Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)))
20 df-fn 5793 . . 3 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)))
2119, 20sylibr 222 . 2 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
22 tfrlem.3 . . 3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
2322fneq1i 5885 . 2 (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
2421, 23sylibr 222 1 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {cab 2595  wral 2895  wrex 2896  Vcvv 3172  cun 3537  cin 3538  c0 3873  {csn 4124  cop 4130  dom cdm 5028  cres 5030  Ord word 5625  Oncon0 5626  suc csuc 5628  Fun wfun 5784   Fn wfn 5785  cfv 5790  recscrecs 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-fv 5798  df-wrecs 7271  df-recs 7332
This theorem is referenced by:  tfrlem11  7348  tfrlem12  7349  tfrlem13  7350
  Copyright terms: Public domain W3C validator