Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq2 Structured version   Visualization version   GIF version

Theorem tendoeq2 35080
Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 35130, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoeq2.b 𝐵 = (Base‘𝐾)
tendoeq2.h 𝐻 = (LHyp‘𝐾)
tendoeq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoeq2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoeq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Distinct variable groups:   𝑓,𝐸   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑈,𝑓   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem tendoeq2
StepHypRef Expression
1 tendoeq2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 tendoeq2.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 tendoeq2.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendoid 35079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
54adantrr 749 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
61, 2, 3tendoid 35079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
76adantrl 748 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
85, 7eqtr4d 2647 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵)))
9 fveq2 6103 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑈‘( I ↾ 𝐵)))
10 fveq2 6103 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑉𝑓) = (𝑉‘( I ↾ 𝐵)))
119, 10eqeq12d 2625 . . . . 5 (𝑓 = ( I ↾ 𝐵) → ((𝑈𝑓) = (𝑉𝑓) ↔ (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵))))
128, 11syl5ibrcom 236 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
1312ralrimivw 2950 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
14 r19.26 3046 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
15 jaob 818 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
16 exmidne 2792 . . . . . . . 8 (𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵))
17 pm5.5 350 . . . . . . . 8 ((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓)))
1816, 17ax-mp 5 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓))
1915, 18bitr3i 265 . . . . . 6 (((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (𝑈𝑓) = (𝑉𝑓))
2019ralbii 2963 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
2114, 20bitr3i 265 . . . 4 ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
22 tendoeq2.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
232, 22, 3tendoeq1 35070 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
24233expia 1259 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓) → 𝑈 = 𝑉))
2521, 24syl5bi 231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉))
2613, 25mpand 707 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉))
27263impia 1253 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896   I cid 4948  cres 5040  cfv 5804  Basecbs 15695  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061
This theorem is referenced by:  tendocan  35130
  Copyright terms: Public domain W3C validator