Mathbox for David A. Wheeler < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 42278
 Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 42275. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6107 . . 3 (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴)))
32oveq1d 6564 . 2 (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i))
4 df-tanh 42275 . 2 tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
5 ovex 6577 . 2 ((tan‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6191 1 (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  {csn 4125  ◡ccnv 5037   “ cima 5041  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  ici 9817   · cmul 9820   / cdiv 10563  tanctan 14635  coshccosh 42271  tanhctanh 42272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-tanh 42275 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator