MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfo Structured version   Visualization version   GIF version

Theorem symgextfo 17665
Description: The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfo ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfo
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 17660 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 eqid 2610 . . . . . . . . . . 11 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
54, 1symgbasf1o 17626 . . . . . . . . . 10 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
6 f1ofo 6057 . . . . . . . . . 10 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
75, 6syl 17 . . . . . . . . 9 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
87adantl 481 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
9 dffo3 6282 . . . . . . . 8 (𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
108, 9sylib 207 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1110simprd 478 . . . . . 6 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖))
121, 2symgextfv 17661 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑖) = (𝑍𝑖)))
1312imp 444 . . . . . . . . 9 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑖) = (𝑍𝑖))
1413eqeq2d 2620 . . . . . . . 8 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝑘 = (𝐸𝑖) ↔ 𝑘 = (𝑍𝑖)))
1514rexbidva 3031 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1615ralbidv 2969 . . . . . 6 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1711, 16mpbird 246 . . . . 5 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖))
18 difssd 3700 . . . . . . 7 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
19 ssrexv 3630 . . . . . . 7 ((𝑁 ∖ {𝐾}) ⊆ 𝑁 → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2018, 19syl 17 . . . . . 6 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2120ralimia 2934 . . . . 5 (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
2217, 21syl 17 . . . 4 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
23 simpl 472 . . . . 5 ((𝐾𝑁𝑍𝑆) → 𝐾𝑁)
241, 2symgextfve 17662 . . . . . . . 8 (𝐾𝑁 → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2524adantr 480 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2625imp 444 . . . . . 6 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → (𝐸𝑖) = 𝐾)
2726eqcomd 2616 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → 𝐾 = (𝐸𝑖))
2823, 27rspcedeq2vd 3291 . . . 4 ((𝐾𝑁𝑍𝑆) → ∃𝑖𝑁 𝐾 = (𝐸𝑖))
29 eqeq1 2614 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 = (𝐸𝑖) ↔ 𝐾 = (𝐸𝑖)))
3029rexbidv 3034 . . . . . 6 (𝑘 = 𝐾 → (∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∃𝑖𝑁 𝐾 = (𝐸𝑖)))
3130ralunsn 4360 . . . . 5 (𝐾𝑁 → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3231adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3322, 28, 32mpbir2and 959 . . 3 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
34 difsnid 4282 . . . . . 6 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
3534eqcomd 2616 . . . . 5 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
3635raleqdv 3121 . . . 4 (𝐾𝑁 → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3736adantr 480 . . 3 ((𝐾𝑁𝑍𝑆) → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3833, 37mpbird 246 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖))
39 dffo3 6282 . 2 (𝐸:𝑁onto𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖)))
403, 38, 39sylanbrc 695 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  cun 3538  wss 3540  ifcif 4036  {csn 4125  cmpt 4643  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  Basecbs 15695  SymGrpcsymg 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-symg 17621
This theorem is referenced by:  symgextf1o  17666
  Copyright terms: Public domain W3C validator