MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1 Structured version   Visualization version   GIF version

Theorem symgextf1 17664
Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 17660 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 difsnid 4282 . . . . . . . 8 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
54eqcomd 2616 . . . . . . 7 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
65eleq2d 2673 . . . . . 6 (𝐾𝑁 → (𝑦𝑁𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
75eleq2d 2673 . . . . . 6 (𝐾𝑁 → (𝑧𝑁𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
86, 7anbi12d 743 . . . . 5 (𝐾𝑁 → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
98adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
10 elun 3715 . . . . . 6 (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}))
11 elun 3715 . . . . . 6 (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾}))
121, 2symgextfv 17661 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑦) = (𝑍𝑦)))
1312com12 32 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1413adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1514imp 444 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑦) = (𝑍𝑦))
161, 2symgextfv 17661 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑧) = (𝑍𝑧)))
1716com12 32 . . . . . . . . . . . 12 (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1817adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1918imp 444 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑧) = (𝑍𝑧))
2015, 19eqeq12d 2625 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) ↔ (𝑍𝑦) = (𝑍𝑧)))
21 eqid 2610 . . . . . . . . . . . . 13 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2221, 1symgbasf1o 17626 . . . . . . . . . . . 12 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
23 f1of1 6049 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}))
24 dff13 6416 . . . . . . . . . . . . 13 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)))
25 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑦 → (𝑍𝑖) = (𝑍𝑦))
2625eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑦 → ((𝑍𝑖) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑗)))
27 equequ1 1939 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑦 → (𝑖 = 𝑗𝑦 = 𝑗))
2826, 27imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → (((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗)))
29 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑧 → (𝑍𝑗) = (𝑍𝑧))
3029eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑧 → ((𝑍𝑦) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑧)))
31 equequ2 1940 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑧 → (𝑦 = 𝑗𝑦 = 𝑧))
3230, 31imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → (((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3328, 32rspc2va 3294 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3433expcom 450 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3534a1d 25 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3635adantl 481 . . . . . . . . . . . . 13 ((𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3724, 36sylbi 206 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3822, 23, 373syl 18 . . . . . . . . . . 11 (𝑍𝑆 → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3938impcom 445 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
4039impcom 445 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
4120, 40sylbid 229 . . . . . . . 8 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4241ex 449 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
431, 2symgextf1lem 17663 . . . . . . . . 9 ((𝐾𝑁𝑍𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸𝑧) ≠ (𝐸𝑦)))
44 eqneqall 2793 . . . . . . . . . . 11 ((𝐸𝑧) = (𝐸𝑦) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4544eqcoms 2618 . . . . . . . . . 10 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4645com12 32 . . . . . . . . 9 ((𝐸𝑧) ≠ (𝐸𝑦) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4743, 46syl6com 36 . . . . . . . 8 ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
4847ancoms 468 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
491, 2symgextf1lem 17663 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸𝑦) ≠ (𝐸𝑧)))
50 eqneqall 2793 . . . . . . . . 9 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑦) ≠ (𝐸𝑧) → 𝑦 = 𝑧))
5150com12 32 . . . . . . . 8 ((𝐸𝑦) ≠ (𝐸𝑧) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
5249, 51syl6com 36 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
53 elsni 4142 . . . . . . . 8 (𝑦 ∈ {𝐾} → 𝑦 = 𝐾)
54 elsni 4142 . . . . . . . 8 (𝑧 ∈ {𝐾} → 𝑧 = 𝐾)
55 eqtr3 2631 . . . . . . . . 9 ((𝑦 = 𝐾𝑧 = 𝐾) → 𝑦 = 𝑧)
56552a1d 26 . . . . . . . 8 ((𝑦 = 𝐾𝑧 = 𝐾) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5753, 54, 56syl2an 493 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5842, 48, 52, 57ccase 984 . . . . . 6 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5910, 11, 58syl2anb 495 . . . . 5 ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
6059com12 32 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
619, 60sylbid 229 . . 3 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
6261ralrimivv 2953 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
63 dff13 6416 . 2 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
643, 62, 63sylanbrc 695 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  cun 3538  ifcif 4036  {csn 4125  cmpt 4643  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  Basecbs 15695  SymGrpcsymg 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-symg 17621
This theorem is referenced by:  symgextf1o  17666
  Copyright terms: Public domain W3C validator