MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Visualization version   GIF version

Theorem sylow3lem6 17870
Description: Lemma for sylow3 17871, second part. Using the lemma sylow2a 17857, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem6.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
Assertion
Ref Expression
sylow3lem6 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝑠,𝑦,𝑧,   𝐾,𝑠,𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑋,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝜑,𝑠,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑠)   (𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑋(𝑠)

Proof of Theorem sylow3lem6
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
2 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
3 sylow3.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
6 sylow3lem5.a . . . . . 6 + = (+g𝐺)
7 sylow3lem5.d . . . . . 6 = (-g𝐺)
8 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem5.m . . . . . 6 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 17869 . . . . 5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
11 eqid 2610 . . . . . . 7 (𝐺s 𝐾) = (𝐺s 𝐾)
1211slwpgp 17851 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐾))
138, 12syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐾))
14 slwsubg 17848 . . . . . . . 8 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
158, 14syl 17 . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1611subgbas 17421 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
1715, 16syl 17 . . . . . 6 (𝜑𝐾 = (Base‘(𝐺s 𝐾)))
182subgss 17418 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
1915, 18syl 17 . . . . . . 7 (𝜑𝐾𝑋)
20 ssfi 8065 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝐾𝑋) → 𝐾 ∈ Fin)
214, 19, 20syl2anc 691 . . . . . 6 (𝜑𝐾 ∈ Fin)
2217, 21eqeltrrd 2689 . . . . 5 (𝜑 → (Base‘(𝐺s 𝐾)) ∈ Fin)
23 pwfi 8144 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
244, 23sylib 207 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ Fin)
25 slwsubg 17848 . . . . . . . . 9 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
262subgss 17418 . . . . . . . . 9 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
2725, 26syl 17 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
28 selpw 4115 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2927, 28sylibr 223 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
3029ssriv 3572 . . . . . 6 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
31 ssfi 8065 . . . . . 6 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
3224, 30, 31sylancl 693 . . . . 5 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
33 eqid 2610 . . . . 5 {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}
34 eqid 2610 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)} = {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)}
351, 10, 13, 22, 32, 33, 34sylow2a 17857 . . . 4 (𝜑𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})))
36 eqcom 2617 . . . . . . . . . . . . . 14 (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
3719adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾𝑋)
3837sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝑋)
3938biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
4036, 39syl5bb 271 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
41 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝐾)
42 simplr 788 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (𝑃 pSyl 𝐺))
43 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑦 = 𝑠)
44 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑥 = 𝑔)
4544oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑥 + 𝑧) = (𝑔 + 𝑧))
4645, 44oveq12d 6567 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → ((𝑥 + 𝑧) 𝑥) = ((𝑔 + 𝑧) 𝑔))
4743, 46mpteq12dv 4663 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
4847rneqd 5274 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑔𝑦 = 𝑠) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
49 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
5049mptex 6390 . . . . . . . . . . . . . . . . 17 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5150rnex 6992 . . . . . . . . . . . . . . . 16 ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5248, 9, 51ovmpt2a 6689 . . . . . . . . . . . . . . 15 ((𝑔𝐾𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5341, 42, 52syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5453eqeq1d 2612 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠 ↔ ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠))
55 slwsubg 17848 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑃 pSyl 𝐺) → 𝑠 ∈ (SubGrp‘𝐺))
5655ad2antlr 759 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
57 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔))
58 sylow3lem6.n . . . . . . . . . . . . . . 15 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
592, 6, 7, 57, 58conjnmzb 17518 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubGrp‘𝐺) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
6056, 59syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
6140, 54, 603bitr4d 299 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠𝑔𝑁))
6261ralbidva 2968 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔𝐾 𝑔𝑁))
63 dfss3 3558 . . . . . . . . . . 11 (𝐾𝑁 ↔ ∀𝑔𝐾 𝑔𝑁)
6462, 63syl6bbr 277 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠𝐾𝑁))
6517adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾 = (Base‘(𝐺s 𝐾)))
6665raleqdv 3121 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠))
67 eqid 2610 . . . . . . . . . . . . 13 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
683ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐺 ∈ Grp)
6958, 2, 6nmzsubg 17458 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
7068, 69syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
71 eqid 2610 . . . . . . . . . . . . . . . 16 (𝐺s 𝑁) = (𝐺s 𝑁)
7271subgbas 17421 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
7370, 72syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 = (Base‘(𝐺s 𝑁)))
744ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑋 ∈ Fin)
752subgss 17418 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
7670, 75syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁𝑋)
77 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Fin ∧ 𝑁𝑋) → 𝑁 ∈ Fin)
7874, 76, 77syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
7973, 78eqeltrrd 2689 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (Base‘(𝐺s 𝑁)) ∈ Fin)
808ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl 𝐺))
81 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾𝑁)
8271subgslw 17854 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8370, 80, 81, 82syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
84 simplr 788 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl 𝐺))
8555ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (SubGrp‘𝐺))
8658, 2, 6ssnmz 17459 . . . . . . . . . . . . . . 15 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑁)
8785, 86syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠𝑁)
8871subgslw 17854 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ (𝑃 pSyl 𝐺) ∧ 𝑠𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8970, 84, 87, 88syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
90 fvex 6113 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
912, 90eqeltri 2684 . . . . . . . . . . . . . . 15 𝑋 ∈ V
9258, 91rabex2 4742 . . . . . . . . . . . . . 14 𝑁 ∈ V
9371, 6ressplusg 15818 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g‘(𝐺s 𝑁)))
9492, 93ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(𝐺s 𝑁))
95 eqid 2610 . . . . . . . . . . . . 13 (-g‘(𝐺s 𝑁)) = (-g‘(𝐺s 𝑁))
9667, 79, 83, 89, 94, 95sylow2 17864 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → ∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9758, 2, 6, 71nmznsg 17461 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
9885, 97syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
99 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))
10067, 94, 95, 99conjnsg 17519 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
10198, 100sylan 487 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
102 eqeq2 2621 . . . . . . . . . . . . . 14 (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → (𝑠 = 𝐾𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))))
103101, 102syl5ibrcom 236 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
104103rexlimdva 3013 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10596, 104mpd 15 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 = 𝐾)
106 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
10715ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾 ∈ (SubGrp‘𝐺))
108106, 107eqeltrd 2688 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
109108, 86syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠𝑁)
110106, 109eqsstr3d 3603 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾𝑁)
111105, 110impbida 873 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝐾𝑁𝑠 = 𝐾))
11264, 66, 1113bitr3d 297 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠𝑠 = 𝐾))
113112rabbidva 3163 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾})
114 rabsn 4200 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
1158, 114syl 17 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
116113, 115eqtrd 2644 . . . . . . 7 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝐾})
117116fveq2d 6107 . . . . . 6 (𝜑 → (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = (#‘{𝐾}))
118 hashsng 13020 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → (#‘{𝐾}) = 1)
1198, 118syl 17 . . . . . 6 (𝜑 → (#‘{𝐾}) = 1)
120117, 119eqtrd 2644 . . . . 5 (𝜑 → (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = 1)
121120oveq2d 6565 . . . 4 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) − (#‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})) = ((#‘(𝑃 pSyl 𝐺)) − 1))
12235, 121breqtrd 4609 . . 3 (𝜑𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1))
123 prmnn 15226 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1245, 123syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
125 hashcl 13009 . . . . . 6 ((𝑃 pSyl 𝐺) ∈ Fin → (#‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
12632, 125syl 17 . . . . 5 (𝜑 → (#‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
127126nn0zd 11356 . . . 4 (𝜑 → (#‘(𝑃 pSyl 𝐺)) ∈ ℤ)
128 1zzd 11285 . . . 4 (𝜑 → 1 ∈ ℤ)
129 moddvds 14829 . . . 4 ((𝑃 ∈ ℕ ∧ (#‘(𝑃 pSyl 𝐺)) ∈ ℤ ∧ 1 ∈ ℤ) → (((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1)))
130124, 127, 128, 129syl3anc 1318 . . 3 (𝜑 → (((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((#‘(𝑃 pSyl 𝐺)) − 1)))
131122, 130mpbird 246 . 2 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃))
132 prmuz2 15246 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
133 eluz2b2 11637 . . . 4 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
134 nnre 10904 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
135 1mod 12564 . . . . 5 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
136134, 135sylan 487 . . . 4 ((𝑃 ∈ ℕ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
137133, 136sylbi 206 . . 3 (𝑃 ∈ (ℤ‘2) → (1 mod 𝑃) = 1)
1385, 132, 1373syl 18 . 2 (𝜑 → (1 mod 𝑃) = 1)
139131, 138eqtrd 2644 1 (𝜑 → ((#‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127   class class class wbr 4583  {copab 4642  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cr 9814  1c1 9816   < clt 9953  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563   mod cmo 12530  #chash 12979  cdvds 14821  cprime 15223  Basecbs 15695  s cress 15696  +gcplusg 15768  Grpcgrp 17245  -gcsg 17247  SubGrpcsubg 17411  NrmSGrpcnsg 17412   pGrp cpgp 17769   pSyl cslw 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-ga 17546  df-od 17771  df-pgp 17773  df-slw 17774
This theorem is referenced by:  sylow3  17871
  Copyright terms: Public domain W3C validator