MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem1 Structured version   Visualization version   GIF version

Theorem sylow2alem1 17855
Description: Lemma for sylow2a 17857. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2alem1 ((𝜑𝐴𝑍) → [𝐴] = {𝐴})
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦,𝐴   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2alem1
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . 6 𝑤 ∈ V
2 simpr 476 . . . . . 6 ((𝜑𝐴𝑍) → 𝐴𝑍)
3 elecg 7672 . . . . . 6 ((𝑤 ∈ V ∧ 𝐴𝑍) → (𝑤 ∈ [𝐴] 𝐴 𝑤))
41, 2, 3sylancr 694 . . . . 5 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝐴 𝑤))
5 sylow2a.r . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
65gaorb 17563 . . . . . . 7 (𝐴 𝑤 ↔ (𝐴𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝐴) = 𝑤))
76simp3bi 1071 . . . . . 6 (𝐴 𝑤 → ∃𝑘𝑋 (𝑘 𝐴) = 𝑤)
8 oveq2 6557 . . . . . . . . . . . . . 14 (𝑢 = 𝐴 → ( 𝑢) = ( 𝐴))
9 id 22 . . . . . . . . . . . . . 14 (𝑢 = 𝐴𝑢 = 𝐴)
108, 9eqeq12d 2625 . . . . . . . . . . . . 13 (𝑢 = 𝐴 → (( 𝑢) = 𝑢 ↔ ( 𝐴) = 𝐴))
1110ralbidv 2969 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (∀𝑋 ( 𝑢) = 𝑢 ↔ ∀𝑋 ( 𝐴) = 𝐴))
12 sylow2a.z . . . . . . . . . . . 12 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
1311, 12elrab2 3333 . . . . . . . . . . 11 (𝐴𝑍 ↔ (𝐴𝑌 ∧ ∀𝑋 ( 𝐴) = 𝐴))
142, 13sylib 207 . . . . . . . . . 10 ((𝜑𝐴𝑍) → (𝐴𝑌 ∧ ∀𝑋 ( 𝐴) = 𝐴))
1514simprd 478 . . . . . . . . 9 ((𝜑𝐴𝑍) → ∀𝑋 ( 𝐴) = 𝐴)
16 oveq1 6556 . . . . . . . . . . 11 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1716eqeq1d 2612 . . . . . . . . . 10 ( = 𝑘 → (( 𝐴) = 𝐴 ↔ (𝑘 𝐴) = 𝐴))
1817rspccva 3281 . . . . . . . . 9 ((∀𝑋 ( 𝐴) = 𝐴𝑘𝑋) → (𝑘 𝐴) = 𝐴)
1915, 18sylan 487 . . . . . . . 8 (((𝜑𝐴𝑍) ∧ 𝑘𝑋) → (𝑘 𝐴) = 𝐴)
20 eqeq1 2614 . . . . . . . 8 ((𝑘 𝐴) = 𝑤 → ((𝑘 𝐴) = 𝐴𝑤 = 𝐴))
2119, 20syl5ibcom 234 . . . . . . 7 (((𝜑𝐴𝑍) ∧ 𝑘𝑋) → ((𝑘 𝐴) = 𝑤𝑤 = 𝐴))
2221rexlimdva 3013 . . . . . 6 ((𝜑𝐴𝑍) → (∃𝑘𝑋 (𝑘 𝐴) = 𝑤𝑤 = 𝐴))
237, 22syl5 33 . . . . 5 ((𝜑𝐴𝑍) → (𝐴 𝑤𝑤 = 𝐴))
244, 23sylbid 229 . . . 4 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝑤 = 𝐴))
25 velsn 4141 . . . 4 (𝑤 ∈ {𝐴} ↔ 𝑤 = 𝐴)
2624, 25syl6ibr 241 . . 3 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝑤 ∈ {𝐴}))
2726ssrdv 3574 . 2 ((𝜑𝐴𝑍) → [𝐴] ⊆ {𝐴})
28 sylow2a.m . . . . . . 7 (𝜑 ∈ (𝐺 GrpAct 𝑌))
29 sylow2a.x . . . . . . . 8 𝑋 = (Base‘𝐺)
305, 29gaorber 17564 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
3128, 30syl 17 . . . . . 6 (𝜑 Er 𝑌)
3231adantr 480 . . . . 5 ((𝜑𝐴𝑍) → Er 𝑌)
3314simpld 474 . . . . 5 ((𝜑𝐴𝑍) → 𝐴𝑌)
3432, 33erref 7649 . . . 4 ((𝜑𝐴𝑍) → 𝐴 𝐴)
35 elecg 7672 . . . . 5 ((𝐴𝑍𝐴𝑍) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
362, 35sylancom 698 . . . 4 ((𝜑𝐴𝑍) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3734, 36mpbird 246 . . 3 ((𝜑𝐴𝑍) → 𝐴 ∈ [𝐴] )
3837snssd 4281 . 2 ((𝜑𝐴𝑍) → {𝐴} ⊆ [𝐴] )
3927, 38eqssd 3585 1 ((𝜑𝐴𝑍) → [𝐴] = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  {copab 4642  cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627  Fincfn 7841  Basecbs 15695   GrpAct cga 17545   pGrp cpgp 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-ec 7631  df-map 7746  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-ga 17546
This theorem is referenced by:  sylow2alem2  17856  sylow2a  17857
  Copyright terms: Public domain W3C validator