Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl213anc Structured version   Visualization version   GIF version

Theorem syl213anc 1337
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl213anc.7 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl213anc (𝜑𝜎)

Proof of Theorem syl213anc
StepHypRef Expression
1 syl12anc.1 . . 3 (𝜑𝜓)
2 syl12anc.2 . . 3 (𝜑𝜒)
31, 2jca 553 . 2 (𝜑 → (𝜓𝜒))
4 syl12anc.3 . 2 (𝜑𝜃)
5 syl22anc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl213anc.7 . 2 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂𝜁)) → 𝜎)
93, 4, 5, 6, 7, 8syl113anc 1330 1 (𝜑𝜎)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by:  syl223anc  1344  decpmatmul  20396
 Copyright terms: Public domain W3C validator