Step | Hyp | Ref
| Expression |
1 | | simpr1 1060 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉)) |
2 | | simpr2 1061 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
ℕ0)) |
3 | | simpl 472 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → 𝑁 ≤ 𝑀) |
4 | | swrdsb0eq 13299 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ 𝑁 ≤ 𝑀) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
5 | 1, 2, 3, 4 | syl3anc 1318 |
. . 3
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
6 | | ral0 4028 |
. . . . . . 7
⊢
∀𝑖 ∈
∅ (𝑊‘𝑖) = (𝑈‘𝑖) |
7 | | nn0z 11277 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
8 | | nn0z 11277 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
9 | | fzon 12358 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
10 | 7, 8, 9 | syl2an 493 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
11 | 10 | biimpa 500 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (𝑀..^𝑁) = ∅) |
12 | 11 | raleqdv 3121 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊‘𝑖) = (𝑈‘𝑖))) |
13 | 6, 12 | mpbiri 247 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
14 | 13 | ex 449 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
15 | 14 | 3ad2ant2 1076 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
16 | 15 | impcom 445 |
. . 3
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
17 | 5, 16 | 2thd 254 |
. 2
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
18 | | swrdcl 13271 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
19 | | swrdcl 13271 |
. . . . . 6
⊢ (𝑈 ∈ Word 𝑉 → (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
20 | | eqwrd 13201 |
. . . . . 6
⊢ (((𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉 ∧ (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
21 | 18, 19, 20 | syl2an 493 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
22 | 21 | 3ad2ant1 1075 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
23 | 22 | adantl 481 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
24 | | swrdsbslen 13300 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉))) |
25 | 24 | adantl 481 |
. . . 4
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉))) |
26 | 25 | biantrurd 528 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (#‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
27 | | nn0re 11178 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
28 | | nn0re 11178 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
29 | | ltnle 9996 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀)) |
30 | | ltle 10005 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 → 𝑀 ≤ 𝑁)) |
31 | 29, 30 | sylbird 249 |
. . . . . . 7
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬
𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
32 | 27, 28, 31 | syl2an 493 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
33 | 32 | 3ad2ant2 1076 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
34 | | simpl1l 1105 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑊 ∈ Word 𝑉) |
35 | | simpl 472 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈
ℕ0) |
36 | 35 | 3ad2ant2 1076 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈
ℕ0) |
37 | 36 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈
ℕ0) |
38 | 7, 8 | anim12i 588 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
39 | 38 | 3ad2ant2 1076 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
40 | 39 | anim1i 590 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
41 | | df-3an 1033 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
42 | 40, 41 | sylibr 223 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
43 | | eluz2 11569 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
44 | 42, 43 | sylibr 223 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
45 | 37, 44 | jca 553 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀))) |
46 | | simpl 472 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)) → 𝑁 ≤ (#‘𝑊)) |
47 | 46 | 3ad2ant3 1077 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑁 ≤ (#‘𝑊)) |
48 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (#‘𝑊)) |
49 | 34, 45, 48 | 3jca 1235 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (#‘𝑊))) |
50 | | swrdlen2 13297 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (#‘𝑊)) → (#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
51 | 49, 50 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (#‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
52 | 51 | oveq2d 6565 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉))) = (0..^(𝑁 − 𝑀))) |
53 | 52 | raleqdv 3121 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
54 | | 0zd 11266 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 0 ∈
ℤ) |
55 | | zsubcl 11296 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) |
56 | 8, 7, 55 | syl2anr 494 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 − 𝑀) ∈ ℤ) |
57 | 56 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑁 − 𝑀) ∈ ℤ) |
58 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℤ) |
59 | 58 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈ ℤ) |
60 | | fzoshftral 12447 |
. . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ (𝑁
− 𝑀) ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ (∀𝑗 ∈
(0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
61 | 54, 57, 59, 60 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
62 | 61 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
63 | | nn0cn 11179 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
64 | | nn0cn 11179 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
65 | | addid2 10098 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℂ → (0 +
𝑀) = 𝑀) |
66 | 65 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 +
𝑀) = 𝑀) |
67 | | npcan 10169 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
68 | 66, 67 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 +
𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
69 | 63, 64, 68 | syl2anr 494 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
70 | 69 | 3ad2ant2 1076 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
71 | 70 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
72 | 71 | raleqdv 3121 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
73 | | ovex 6577 |
. . . . . . . . . . . 12
⊢ (𝑖 − 𝑀) ∈ V |
74 | | sbceqg 3936 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
75 | | csbfv2g 6142 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗)) |
76 | | csbvarg 3955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌𝑗 = (𝑖 − 𝑀)) |
77 | 76 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 − 𝑀) ∈ V → ((𝑊 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
78 | 75, 77 | eqtrd 2644 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
79 | | csbfv2g 6142 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗)) |
80 | 76 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 − 𝑀) ∈ V → ((𝑈 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
81 | 79, 80 | eqtrd 2644 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
82 | 78, 81 | eqeq12d 2625 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → (⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
83 | 74, 82 | bitrd 267 |
. . . . . . . . . . . 12
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
84 | 73, 83 | mp1i 13 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
85 | | swrdfv2 13298 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (#‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
86 | 49, 85 | sylan 487 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
87 | | simpl1r 1106 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑈 ∈ Word 𝑉) |
88 | | simpl3r 1110 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (#‘𝑈)) |
89 | 87, 45, 88 | 3jca 1235 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (#‘𝑈))) |
90 | | swrdfv2 13298 |
. . . . . . . . . . . . 13
⊢ (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (#‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
91 | 89, 90 | sylan 487 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
92 | 86, 91 | eqeq12d 2625 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
93 | 84, 92 | bitrd 267 |
. . . . . . . . . 10
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
94 | 93 | ralbidva 2968 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
95 | 72, 94 | bitrd 267 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
96 | 62, 95 | bitrd 267 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
97 | 53, 96 | bitrd 267 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
98 | 97 | ex 449 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑀 ≤ 𝑁 → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
99 | 33, 98 | syld 46 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
100 | 99 | impcom 445 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
101 | 23, 26, 100 | 3bitr2d 295 |
. 2
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
102 | 17, 101 | pm2.61ian 827 |
1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |