MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3a Structured version   Visualization version   GIF version

Theorem swrdccat3a 13345
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
swrdccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))

Proof of Theorem swrdccat3a
StepHypRef Expression
1 elfznn0 12302 . . . . . 6 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → 𝑁 ∈ ℕ0)
2 0elfz 12305 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
31, 2syl 17 . . . . 5 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → 0 ∈ (0...𝑁))
43ancri 573 . . . 4 (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))))
5 swrdccatin12.l . . . . . 6 𝐿 = (#‘𝐴)
65swrdccat3 13343 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
76imp 444 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
84, 7sylan2 490 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
9 iftrue 4042 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 substr ⟨0, 𝑁⟩))
109adantl 481 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ 𝑁𝐿) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 substr ⟨0, 𝑁⟩))
11 iffalse 4045 . . . . . 6 𝑁𝐿 → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
12113ad2ant2 1076 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
13 lencl 13179 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
145, 13syl5eqel 2692 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
15 nn0le0eq0 11198 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝐿 ≤ 0 ↔ 𝐿 = 0))
1614, 15syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (𝐿 ≤ 0 ↔ 𝐿 = 0))
1716biimpd 218 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝐿 ≤ 0 → 𝐿 = 0))
1817adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ≤ 0 → 𝐿 = 0))
195eqeq1i 2615 . . . . . . . . . . . . . . . 16 (𝐿 = 0 ↔ (#‘𝐴) = 0)
2019biimpi 205 . . . . . . . . . . . . . . 15 (𝐿 = 0 → (#‘𝐴) = 0)
21 hasheq0 13015 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → ((#‘𝐴) = 0 ↔ 𝐴 = ∅))
2220, 21syl5ib 233 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → (𝐿 = 0 → 𝐴 = ∅))
2322adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 = 0 → 𝐴 = ∅))
2423imp 444 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → 𝐴 = ∅)
25 0m0e0 11007 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
26 oveq2 6557 . . . . . . . . . . . . . . . . 17 (0 = 𝐿 → (0 − 0) = (0 − 𝐿))
2726eqcoms 2618 . . . . . . . . . . . . . . . 16 (𝐿 = 0 → (0 − 0) = (0 − 𝐿))
2825, 27syl5eqr 2658 . . . . . . . . . . . . . . 15 (𝐿 = 0 → 0 = (0 − 𝐿))
2928adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → 0 = (0 − 𝐿))
3029opeq1d 4346 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → ⟨0, (𝑁𝐿)⟩ = ⟨(0 − 𝐿), (𝑁𝐿)⟩)
3130oveq2d 6565 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3224, 31oveq12d 6567 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
33 swrdcl 13271 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
34 ccatlid 13222 . . . . . . . . . . . . . 14 ((𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3533, 34syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3635adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3736adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (∅ ++ (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3832, 37eqtrd 2644 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐿 = 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
3938ex 449 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 = 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4018, 39syld 46 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ≤ 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4140adantr 480 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → (𝐿 ≤ 0 → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩)))
4241imp 444 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ 𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
43423adant2 1073 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
4412, 43eqtrd 2644 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩))
45113ad2ant2 1076 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
465opeq2i 4344 . . . . . . . . . . 11 ⟨0, 𝐿⟩ = ⟨0, (#‘𝐴)⟩
4746oveq2i 6560 . . . . . . . . . 10 (𝐴 substr ⟨0, 𝐿⟩) = (𝐴 substr ⟨0, (#‘𝐴)⟩)
48 swrdid 13280 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴)
4947, 48syl5req 2657 . . . . . . . . 9 (𝐴 ∈ Word 𝑉𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5049adantr 480 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5150adantr 480 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
52513ad2ant1 1075 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → 𝐴 = (𝐴 substr ⟨0, 𝐿⟩))
5352oveq1d 6564 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
5445, 53eqtrd 2644 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿 ≤ 0) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
5510, 44, 542if2 4086 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), if(𝐿 ≤ 0, (𝐵 substr ⟨(0 − 𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨0, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
568, 55eqtr4d 2647 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))
5756ex 449 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  c0 3874  ifcif 4036  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818  cle 9954  cmin 10145  0cn0 11169  ...cfz 12197  #chash 12979  Word cword 13146   ++ cconcat 13148   substr csubstr 13150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158
This theorem is referenced by:  swrdccatid  13348
  Copyright terms: Public domain W3C validator