Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swoso | Structured version Visualization version GIF version |
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
swoer.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) |
swoer.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) |
swoso.4 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
swoso.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
swoso | ⊢ (𝜑 → < Or 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swoso.4 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
2 | swoer.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) | |
3 | swoer.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
4 | 2, 3 | swopo 4969 | . . 3 ⊢ (𝜑 → < Po 𝑋) |
5 | poss 4961 | . . 3 ⊢ (𝑌 ⊆ 𝑋 → ( < Po 𝑋 → < Po 𝑌)) | |
6 | 1, 4, 5 | sylc 63 | . 2 ⊢ (𝜑 → < Po 𝑌) |
7 | 1 | sselda 3568 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
8 | 1 | sselda 3568 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
9 | 7, 8 | anim12dan 878 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
10 | swoer.1 | . . . . . . 7 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
11 | 10 | brdifun 7658 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
13 | df-3an 1033 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) | |
14 | swoso.5 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) | |
15 | 13, 14 | sylan2br 492 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
16 | 15 | expr 641 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
17 | 12, 16 | sylbird 249 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
18 | 17 | orrd 392 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
19 | 3orcomb 1041 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
20 | df-3or 1032 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) | |
21 | 19, 20 | bitri 263 | . . 3 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
22 | 18, 21 | sylibr 223 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
23 | 6, 22 | issod 4989 | 1 ⊢ (𝜑 → < Or 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∨ w3o 1030 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 ∪ cun 3538 ⊆ wss 3540 class class class wbr 4583 Po wpo 4957 Or wor 4958 × cxp 5036 ◡ccnv 5037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-po 4959 df-so 4960 df-xp 5044 df-cnv 5046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |